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Exterior Calculus: Economic Profit Dynamics

Troy L. Story

Abstract—A mathematical model for the Dynamics of Economic II. DIFFERENTIAL ONE-FORMS

Profit is constructed by proposing a characteridiiterential one- g oytarior derivative of a scalar functiérin exterior
form for this dynamics (analogous to the action Hamiltonian

dynamics). After processing this form with exterdalculus, a pair of calculus (a differential one-forrdf ) is the same operation on
characteristic differential equations is generated solved for the f as the exact differential of a scalar functioh in
rate of change of proff as a function of revenu(t) and cosC (t).  conventional calculus (exact differentidf ); namely, the
By contracting the characteristic differential doem with a vortex operation represents an infinitesimal changef innduced by
vector, the Lagrangian is obtained for the Dynamit€conomic gp arbitrary displacement of a point. Howe\dr,is already a
Profit, scalar, whereadf must be contracted with a tangent vector

Keywords—Differential geometry, exterior calculus, Hamiltani to become a scalar. The ope_ratlo_n of c.ontractlt_in,ot.bd by
geometry, mathematical economics, economic funstiomnd df (V), thus removes the arbitrariness in the directibthe

dynamics displacement, where this direction is the samehas df the
tangent vectorv (tangent vectors and the exterior derivative
operator are denoted by boldface symbols and afduad],
SING as a background a recent paper on the applicat respectively).
of exterior calculus to Economic Growth Dynamic$, [1 In this setting, consider an-dimensional differentiable
the present paper uses exterior calculus to symthesset of manifoldM with n local coordinates<* . At every point ofM,
differential equations for the dynamics of Econorfirofit
P(R, C, t), whereR(t) is the revenueC(t) is the cost and is  (a) there exists a basis set of tangent vec{@rsaxk} for an
the time. The differential equations produced atesl for
the rate of change of price as a function of theemee and
cost. The following principle is used:

Mathematical models of dynamics employing exteriofb) there exists a basis set of differential OHEHE){ka} for
calculus are mathematical representations of theesmifying  an n-dimensional vector space of differential one-fornd$
principle; namely, the description of a dynamictegs with a
characteristic differential one-form on an odd-dnsienal
differentiable manifold leads, by analysis with exidr
calculus, to a set of differential equations archaracteristic 1€ tangent bundlerM (=UTM, ) and cotangent bundle

tangent vector which define transformations of sgstem [2]. T+m (: UT*MX), where the cotangent spa@éM, is the

The origin of this principle is Arnold’s [3] use differential
gin o princip &1 dual of tangent spaceTM_, have the natural structure of a
forms to define Hamiltonian geometry. X

The background for the mathematical structure tuf tdifferential manifold of dimension r2with local coordinates

present mathematical model has been presentedebdf@:4, {x",dx" (v)} and {xk,d f (a/axk )} respectively. A
5]; however, for the convenience of the readerticecll
contains a discussion of differential forms, anehtin section
IIl, it is shown how differential one-forms are ds® develop contraction dS(£) = df (v), where¢ eT(T*MX) ; hence,
a model for a dynamic system. With this preparatitire
model for dynamics on differential forms is applied
Economic Profit dynamics in section IV.

The model allows computation of the rate of chaofythe
profit P (R, C, t) as a function of the reveni(t) and the cost IIl. DYNAMICS
C(t); these results are entirely dependent on theofighis
differential geometric approach.

|. INTRODUCTION

n-dimensional vector space of tangent vecterdelonging to
tangent spacefM, and

on tangent spac@M . .

differential one-form dS on T*M, is defined by the

dS=d f (9/0x" )dx" (1)

In Arnold’s treatment [3] of Hamiltonian mechaniasd in
the present case of economic profit as a dynanstesy, a

temporal coordinatex’ is introduced as an additional local
coordinate for M, TM andT*M, thereby changing

. L . ) TM andT*M into odd-dimensional manifolds. As a result, an
Troy L. Story is with the Division of Science andaMematics,

Morehouse College, Atlanta, GA USA 30314-2773, émajadditional term df(9/0x°)dx’ is added to (1), where
tstory@morehouse.edu
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df(0/0x°) is defined as a function of all 12+1)
)

coordinates; hence f (8/8x°) describes the phase flow on R :[a—%]i— 9% ik io
ox‘)ob,  (db, Jox  Ox
the extended cotangent bundle. Usibg for d f (9/0x")

and Qdx° for d f (8/8x°)dx°, the equation fodS becomes The foregoing discussion leads to the following fpaints:
first, contraction of dS with the vortex vectoR , gives

dS=hdx + Q(x°,.x" b ,...b, )dx° @) dS(R) = —h, (9, )+ ()

In Hamiltonian mechanicd . andx’are represented by yhere dS(R) is the Lagrangian on extended tangent space
the momenta, Hamiltonian and time, respectively, fou the
example discussed in section IV, other variabldsplay the
role of b, andx’, as well as ofSandx*. Hence, for the exterior derivative of a characteristic differehttme-form is
contracted on a pair of tangent vectors and sealeguthe

(x,dx /dx°,x°). Secondly, note that for (4), where the

remainder of this section the geometry of extengédse . ; .
space is presented in a general setting that rigtagplies to unique scalar zero, the analy_S|s refer_s to vodbes which do
Hamiltonian mechanics (which defines this geometryﬁOt end. For vortex tubes which end in an elemgntalume,
geometric optics, irreversible thermodynamics, kldwle ~dw(&m) is set equal to a unique scalar other than zero. A
dynamics, Navier-Stokes dynamics, and economic tjrowprevious application [2] of the present model te gource

dynamics, but also to Economic Profit dynamics. dependent Maxwell equations illustrates the diffiege in
The general procedure begins by taking the exteriprocedure required for such vortex tubes.

derivative ofdS to get the following differential two-form: These results lead to the following proposal fbphysical
processes assumed to proceed in a characteriséctidn.
dw=dhb_Adx* Mathematical models of dynamics employing extecalculus

. . . 3) are mathematical representations of the same ngifyi
+ [_ dxk + _]de +[—]dt Adt principle; namely, the description of a dynamictegs with a
X o, ot characteristic differential one-form on an odd-disienal

manifold, leads by analysis with exterior calcutaosa set of

where w=dS. If x* and b, are to describe mappings of thedifferential equations and a vortex vector whichfirde
) o . ) transformations of the systems.
temporal coordinatex” onto the direction of the system phase

flow, then (a)x“ and b, must be functions ofx’ alone and  |v. Economic PROFITDYAMICS ON A DIFFERENTIAL ONE-
(b) the following contraction must be satisfiedeaich point FORM

(bK ,x",xo) of the transformation: The principle described in sections Il and Ilhsw applied
to Economic Profit dynamics. In analogy with Hawilian
dynamics, the present investigation proposes aréifitial one-

dw(g,n):o ) form for Economic Profit dynamics on an odd-dimensil

differentiable manifold. It is then shown that thse of

where the tangent vectdy is given by exterior calculus predicts a pair of differentiguations and a
characteristic tangent vector (the vortex vectoo)y this

do ) & dx<) & 9 dynamics. This pair of equations are solved far tate of
£= v %*[@ %JFW ®) change of Economic Profit with respect to the rexeR (t)

and costC (t). By contracting the characteristic differential

) ) . . . one-form with the vortex vector, the Lagrangiaoliained for
and wheren is an arbitrary vectordw is a mapping of a pair Economic Profit dynamics.

of vectors onto an oriented surface; if the conioac
dw(g,n):o, then the mapping is defined only if the A. Differential one-form for Economic Profit dynamics;
Dynamics

Using as a starting point the Omega funcBqiR,C',t),

dx* /dx® = —(9Q/dh,) and dh, /dX0:<3Q /6x") (6) the differential one-form proposed for Economic firo
dynamics is

coordinatesdb, /dx’ and dx /dx’ of ¢ have the values

By substituting the coordinate values from (6) iff), the dW, =R dC’ +P<R’CI ’t>dt ©)
vortex vectorR is obtained, as given by where Wy plays the role of the action in Hamiltonian
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mechanics, P(R,C',t) is the characteristic function (the

Omega function, e.g., the Hamiltonian), R, isthe revenue, C' is
the cost, and t isthetime. The variable R (t) (compare to
momentum in Hamiltonian mechanics) is conjugate to the
“position”  variable C'(t), as indicated by the following
conditions for conjugacy:

(a)R =dW, (9/9C' ) = contraction of dW, with 9/0C’
()R =R(t) ad C=C(
(c)Pp=P(R.C )

(10)

Using the symbol w = dW,, the exterior derivative of dW, is

dw=drR AdC'
, 11
— [a—P.]dC' + P dR +[@]dt A dt ()
ocC' OR ot

Following the procedure of Story ([1], [2], [4], and [5]),
consider the vectors €,meT(T*M. ), where T(T"M,) is

the tangent of the cotangent space at point C' on the manifold
and wherevector £ and arbitrary vector n are

_(9R) o (&) o 0
E[ dt ]aR +[ dt ]ac‘ ot (12)
n=BR%+BC% % (13)

Employing the mapping dw:(€,m) — dw(&,n), note that this
mapping and the contraction

dw(g,m)=0 (14
are defined only it the coordinates a and dd—lj of ¢
have the values

‘ d
ac’ _ [P _R:+[3_P] (15)
dt OR dt oC'

for arbitrary tangent vector 1. These equations define the

dR dC

relationship between coordinates [E,E,l and coordinate
oP —oP ;
values [E’TR’ ] for tangent vector ¢ at each point of the

transformation; hence, the arbitrariness in the coordinates of
¢ isremoved. The characteristic tangent vector obtained by

International Scholarly and Scientific Research & Innovation 6(3) 2012

replacing the coordinatesfor £ from (12) with the coordinate

values defined by the two differential equations (15), is called
the vortex vector (section 1V C). This vector gives the direction
(the vortex direction) of the system phase flow, with the vortex
lines (integral curves of the differential equations passing
through points of aclosed curve) called the vortex tube.

B. Solutions
Focusing on the differential equation d—R[E , hote
dt oC'
that a positive time rate of revenue earned by sdlling a
commodity, %Q‘>O , implies an increase in the rate of
profit growth with respect to cost. The converse holds; namely,
dd_T <0, impliesadecrease in the rate of profit growth with
respect to cost.
Focusing on the differential equation di: _| 9P , it
dt OR

is noted that an increase in the speed of production costs,
dd—ci> 0, implies a decrease in rate of profit growth with
respect to revenue; conversely, a decrease in the speed of

production costs, d‘% <0, implies an increase in the rate of

profit growth with respect to revenue.
Consider the solutions to these characteristic differentia

equations. Assuming is constant over the time interval

of interest, the equation d—R‘ = [E] , has the solution
dt ocC'

R = +[%]t+ constant of integration (16)

By plotting R vs t, astraight lineis predicted with a slope

[_gg ] ; thus, the rate of change of profit with respect to costs

can be computed from (R, t) data.

Following the same procedure for the eguation
di:— P , While assuming P is constant of the time
dt OR OR
interval of interest, leads to the solution

OP

oR

t+ constant of integration 17)

In this case the straight line predicts a slope of —[5—2];

hence, the rate of change of profit with respect to revenue can
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be computed from(C', t) data. Solutions in egns. (16 & 17)

therefore provide a quantitative measure of thditpgoowth,
based on observations of time rates of changeefakienue
and the production costs.

C. Vortex vector, Lagrangian

By substituting the coordinate values frongu(% =— [g—;

and

— =
ocC'

dR [ oP
dt

ap]a [ap]a ) (18)

N [E OR |0R)oC ot

This vector gives the direction of the system clearg
(R.C',t)-space, an extended cotangent space.

The Lagrangian of the system is obtained [2] bytiating

the characteristic differential one-forndW, with the vortex
vector R, giving for the Lagrangian,

o«
ot

dw, (R)=-R g—; +P=+R (19)

|+

D. Integral Invariant of Economic Profit
Let ~, and ~, be two closed curves in a n(2 1)-

dimensional manifold M 2**
through points of~,

. The vortex lines passing
and ~, form a vortex tube for the

extended phase spacgR,C',t) with ~, —~, =do, where

o is a section of the vortex tube add is the boundary of

o . The vortex lines ofv (= dW, ) on the extended phase

space give a one-to-one projection onto the axis. By
Stokes’ formula,

W — w= | w= | dw (20)
f‘u L(ﬁ’v‘z ‘E)j; ”[
However, according to eqgns. (15) it was shown tifet
eqguations
dc' P d P
_:_8_ _R:+[8_] (21)
dt OR dt oC'

arrive only whendw(&,m) = 0. Hence, the integral ofiw

go=9.
' 2

Eqn. (22) impliesw = dW, = R dC' + P(R,C',t)dtis an
integral invariant of Economic Profit Dynamics.

is zero, implying
(22)
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V. CONCLUSION

The principle applied in this paper is identicalthe one
applied in other areas of Hamiltonian geometry (getic
optics, thermodynamics, Black holes, classical
electromagnetism, classical string theory, Naviek8s
dynamics, and economic growth dynamics). By applyin
exterior calculus to economic profit dynamics, & s
differential equations and a characteristic tangettor for
economic profit are constructed. Solution of theg@ations
gave rates of change of the profit with respeatetenue and

into (12), the vortex vector is obtained ascost. Since a critical and quantitative means ofasugng

economic profit as a function of revenue and castan
extremely useful societal tool, it is expected ttia results
presented here will focus more attention to thisaalof
mathematical economics and to other applicationsthis
differential geometric model of dynamics.
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