There is a newer version of this record available.

Software Open Access

Analysis code for paper: Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction

Russotto, Rick


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/analyzeKernelResults.py"
      }, 
      "checksum": "md5:5f081a7b19add6ab7bcbe5d43635288a", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "analyzeKernelResults.py", 
      "type": "py", 
      "size": 35989
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/APRP.py"
      }, 
      "checksum": "md5:07df5a23dd3b97176a2be4eee09c3b78", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "APRP.py", 
      "type": "py", 
      "size": 26753
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/barGraphsV2.py"
      }, 
      "checksum": "md5:2af1bab571320fbc1ef07751fdb950cf", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "barGraphsV2.py", 
      "type": "py", 
      "size": 21229
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/calculateClimatologiesForRadiativeKernels.py"
      }, 
      "checksum": "md5:8580dd1c53994253a5bc1117713abc74", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "calculateClimatologiesForRadiativeKernels.py", 
      "type": "py", 
      "size": 26427
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/cloudFractionMaps.py"
      }, 
      "checksum": "md5:ab6cd5df0d64c4502d270d2930e10539", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "cloudFractionMaps.py", 
      "type": "py", 
      "size": 26594
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/cloudFractionZonalMeanProfiles.py"
      }, 
      "checksum": "md5:aa7c201a1993514b23832fe2f3fe27e7", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "cloudFractionZonalMeanProfiles.py", 
      "type": "py", 
      "size": 12307
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/correctCESM_rlut.py"
      }, 
      "checksum": "md5:299e377bff92effb4d828b83135a7f44", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "correctCESM_rlut.py", 
      "type": "py", 
      "size": 2596
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/find_rlut_correction.py"
      }, 
      "checksum": "md5:43d5235759e7e0e13a299e4d6b9e531e", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "find_rlut_correction.py", 
      "type": "py", 
      "size": 5382
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/geomipFunctions.py"
      }, 
      "checksum": "md5:92dfe6518bc89061c64fe5256dd1b72a", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "geomipFunctions.py", 
      "type": "py", 
      "size": 38039
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/husZonalMeanProfiles.py"
      }, 
      "checksum": "md5:8c3f9e230896fcf1e0ff05ee4a5ded00", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "husZonalMeanProfiles.py", 
      "type": "py", 
      "size": 12218
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/isG1ReductionCorrelatedWithECS.py"
      }, 
      "checksum": "md5:c336087bfa8dc43b0b2ffbf1edafb3f8", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "isG1ReductionCorrelatedWithECS.py", 
      "type": "py", 
      "size": 13395
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/LICENSE"
      }, 
      "checksum": "md5:d3812ce9b8c6fecc64f5849315f08c05", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "LICENSE", 
      "type": "", 
      "size": 70
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/lowCloudPredictorMaps.py"
      }, 
      "checksum": "md5:bac84f5b75a2591163cf7399c05eb9b7", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "lowCloudPredictorMaps.py", 
      "type": "py", 
      "size": 25957
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/mapLWCRE.py"
      }, 
      "checksum": "md5:70a5764bf28bb7de9a497d19db593103", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "mapLWCRE.py", 
      "type": "py", 
      "size": 26057
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/multiModelMeanAPRP.py"
      }, 
      "checksum": "md5:20e6499f3dac4d66f9ddb7d35a532677", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "multiModelMeanAPRP.py", 
      "type": "py", 
      "size": 16158
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/multiModelMeanCloudsV2.py"
      }, 
      "checksum": "md5:90504930edb0c57190d15450560a0869", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "multiModelMeanCloudsV2.py", 
      "type": "py", 
      "size": 12329
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/multiModelMeanPredictorsV2.py"
      }, 
      "checksum": "md5:cf67f3ea8ab92140f6ddad613be4141b", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "multiModelMeanPredictorsV2.py", 
      "type": "py", 
      "size": 7983
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/rapidVsFeedbackAPRP.py"
      }, 
      "checksum": "md5:d67614db5cb42968a0ae8d97ac76d908", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "rapidVsFeedbackAPRP.py", 
      "type": "py", 
      "size": 21370
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/saveModelLatsLons.py"
      }, 
      "checksum": "md5:1c1a11277ec40641ea5b1308dae9d1e9", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "saveModelLatsLons.py", 
      "type": "py", 
      "size": 2374
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/scriptUsingAPRPonGeoMIP.py"
      }, 
      "checksum": "md5:3f4bfa3b8a70e58f119eae223b91d9dd", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "scriptUsingAPRPonGeoMIP.py", 
      "type": "py", 
      "size": 46613
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/taZonalMeanProfiles.py"
      }, 
      "checksum": "md5:2c0e80958b9622a4ff9ca2f3f1d2396a", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "taZonalMeanProfiles.py", 
      "type": "py", 
      "size": 12377
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/zonalMeanCloudFraction_CSIRO.py"
      }, 
      "checksum": "md5:ee6654aabed65efc8290130fba4a22ed", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "zonalMeanCloudFraction_CSIRO.py", 
      "type": "py", 
      "size": 16718
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048/zonalMeanCloudFraction_HadGEM2-ES.py"
      }, 
      "checksum": "md5:a4481c2f6b82f9c88f219c70ae6f8c91", 
      "bucket": "068d9228-ae18-43f1-b6c2-911848f57048", 
      "key": "zonalMeanCloudFraction_HadGEM2-ES.py", 
      "type": "py", 
      "size": 25196
    }
  ], 
  "owners": [
    41634
  ], 
  "doi": "10.5281/zenodo.1328272", 
  "stats": {
    "version_unique_downloads": 200.0, 
    "unique_views": 152.0, 
    "views": 167.0, 
    "version_views": 229.0, 
    "unique_downloads": 136.0, 
    "version_unique_views": 198.0, 
    "volume": 7465996.0, 
    "version_downloads": 473.0, 
    "downloads": 362.0, 
    "version_volume": 10220337.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1328272", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1328271", 
    "bucket": "https://zenodo.org/api/files/068d9228-ae18-43f1-b6c2-911848f57048", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1328271.svg", 
    "html": "https://zenodo.org/record/1328272", 
    "latest_html": "https://zenodo.org/record/3490985", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1328272.svg", 
    "latest": "https://zenodo.org/api/records/3490985"
  }, 
  "conceptdoi": "10.5281/zenodo.1328271", 
  "created": "2018-08-03T21:24:22.956294+00:00", 
  "updated": "2020-01-25T07:27:23.102944+00:00", 
  "conceptrecid": "1328271", 
  "revision": 7, 
  "id": 1328272, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1328272", 
    "description": "<p>Analysis and plotting scripts&nbsp;for paper by R.D. Russotto and T.P. Ackerman in&nbsp;<em>Atmos. Chem. Phys.</em>&nbsp;special issue on the Geoengineering Model Intercomparison Project.</p>\n\n<p>DOI for paper:&nbsp;<a href=\"https://doi.org/10.5194/acp-2018-345\">10.5194/acp-2018-345</a></p>\n\n<p>Python code was written by Rick Russotto. The APRP.py module was based in part on Matlab scripts provided by Yen-Ting Hwang. The vertical regridding code was based in part on the &quot;convert_sigma_to_pres&quot;&nbsp;algorithm by Dan Vimont, available at&nbsp;<a href=\"http://www.aos.wisc.edu/~dvimont/matlab/\">http://www.aos.wisc.edu/~dvimont/matlab/</a>.</p>\n\n<p>If you use any of this code, please acknowledge where it came from.</p>\n\n<p>Python scripts were run using Python 2.7.9. Versions of packages used:&nbsp;<br>\n-Matplotlib 1.5.1&nbsp;<br>\n-NumPy 1.8.2&nbsp;<br>\n-NetCDF4 1.1.0</p>\n\n<p>&nbsp;</p>\n\n<p>Which scripts make which figures in the paper:</p>\n\n<p><strong>Figure 1:&nbsp;</strong><br>\nisG1ReductionCorrelatedWithECS.py</p>\n\n<p><strong>Figure 2:&nbsp;</strong><br>\ntaZonalMeanProfiles.py</p>\n\n<p><strong>Figure 3:&nbsp;</strong><br>\nhusZonalMeanProfiles.py</p>\n\n<p><strong>Figure 4:&nbsp;</strong><br>\ncloudFractionZonalMeanProfiles.py</p>\n\n<p><strong>Figure 5:&nbsp;</strong><br>\nmultiModelMeanCloudsV2.py</p>\n\n<p><strong>Figure 6:&nbsp;</strong><br>\nmultiModelMeanPredictorsV2.py</p>\n\n<p><strong>Figure 7:&nbsp;</strong><br>\nmultiModelMeanAPRP.py</p>\n\n<p><strong>Figures 8, S9, S10, S11:&nbsp;</strong><br>\nanalyzeKernelResults.py</p>\n\n<p><strong>Figures 9, S12:&nbsp;</strong><br>\nmapLWCRE.py</p>\n\n<p><strong>Figures 10, 11:&nbsp;</strong><br>\nbarGraphsV2.py</p>\n\n<p><strong>Figures S1, S2, S3:&nbsp;</strong><br>\ncloudFractionMaps.py</p>\n\n<p><strong>Figures S4, S5:&nbsp;</strong><br>\nlowCloudPredictorMaps.py</p>\n\n<p><strong>Figures S6, S7, S8:&nbsp;</strong><br>\nscriptUsingAPRPonGeoMIP.py</p>\n\n<p><strong>Figure S13:</strong><br>\nrapidVsFeedbackAPRP.py</p>\n\n<p><strong>Other scripts and modules that the above scripts depend on:&nbsp;</strong><br>\nAPRP.py&nbsp;<br>\ncalculateClimatologiesForRadiativeKernels.py&nbsp;<br>\ncorrectCESM_rlut.py&nbsp;<br>\nfind_rlut_correction.py&nbsp;<br>\ngeomipFunctions.py&nbsp;<br>\nsaveModelLatsLons.py&nbsp;<br>\nzonalMeanCloudFraction_CSIRO.py&nbsp;<br>\nzonalMeanCloudFraction_HadGEM2-ES.py&nbsp;</p>\n\n<p>&nbsp;</p>\n\n<p>A standalone version of the APRP code can be found at&nbsp;<a href=\"https://github.com/rdrussotto/pyAPRP\">https://github.com/rdrussotto/pyAPRP</a>, with further documentation.</p>", 
    "language": "eng", 
    "title": "Analysis code for paper: Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction", 
    "license": {
      "id": "other-at"
    }, 
    "journal": {
      "title": "Atmospheric Chemistry and Physics"
    }, 
    "relations": {
      "version": [
        {
          "count": 2, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1328271"
          }, 
          "is_last": false, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3490985"
          }
        }
      ]
    }, 
    "publication_date": "2018-08-03", 
    "creators": [
      {
        "orcid": "0000-0002-7981-735X", 
        "affiliation": "University of Washington", 
        "name": "Russotto, Rick"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5194/acp-2018-345", 
        "relation": "isSupplementTo"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1328271", 
        "relation": "isVersionOf"
      }
    ]
  }
}
229
473
views
downloads
All versions This version
Views 229167
Downloads 473362
Data volume 10.2 MB7.5 MB
Unique views 198152
Unique downloads 200136

Share

Cite as