Software Open Access
{ "publisher": "Zenodo", "DOI": "10.5281/zenodo.1328272", "container_title": "Atmospheric Chemistry and Physics", "language": "eng", "title": "Analysis code for paper: Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction", "issued": { "date-parts": [ [ 2018, 8, 3 ] ] }, "abstract": "<p>Analysis and plotting scripts for paper by R.D. Russotto and T.P. Ackerman in <em>Atmos. Chem. Phys.</em> special issue on the Geoengineering Model Intercomparison Project.</p>\n\n<p>DOI for paper: <a href=\"https://doi.org/10.5194/acp-2018-345\">10.5194/acp-2018-345</a></p>\n\n<p>Python code was written by Rick Russotto. The APRP.py module was based in part on Matlab scripts provided by Yen-Ting Hwang. The vertical regridding code was based in part on the "convert_sigma_to_pres" algorithm by Dan Vimont, available at <a href=\"http://www.aos.wisc.edu/~dvimont/matlab/\">http://www.aos.wisc.edu/~dvimont/matlab/</a>.</p>\n\n<p>If you use any of this code, please acknowledge where it came from.</p>\n\n<p>Python scripts were run using Python 2.7.9. Versions of packages used: <br>\n-Matplotlib 1.5.1 <br>\n-NumPy 1.8.2 <br>\n-NetCDF4 1.1.0</p>\n\n<p> </p>\n\n<p>Which scripts make which figures in the paper:</p>\n\n<p><strong>Figure 1: </strong><br>\nisG1ReductionCorrelatedWithECS.py</p>\n\n<p><strong>Figure 2: </strong><br>\ntaZonalMeanProfiles.py</p>\n\n<p><strong>Figure 3: </strong><br>\nhusZonalMeanProfiles.py</p>\n\n<p><strong>Figure 4: </strong><br>\ncloudFractionZonalMeanProfiles.py</p>\n\n<p><strong>Figure 5: </strong><br>\nmultiModelMeanCloudsV2.py</p>\n\n<p><strong>Figure 6: </strong><br>\nmultiModelMeanPredictorsV2.py</p>\n\n<p><strong>Figure 7: </strong><br>\nmultiModelMeanAPRP.py</p>\n\n<p><strong>Figures 8, S9, S10, S11: </strong><br>\nanalyzeKernelResults.py</p>\n\n<p><strong>Figures 9, S12: </strong><br>\nmapLWCRE.py</p>\n\n<p><strong>Figures 10, 11: </strong><br>\nbarGraphsV2.py</p>\n\n<p><strong>Figures S1, S2, S3: </strong><br>\ncloudFractionMaps.py</p>\n\n<p><strong>Figures S4, S5: </strong><br>\nlowCloudPredictorMaps.py</p>\n\n<p><strong>Figures S6, S7, S8: </strong><br>\nscriptUsingAPRPonGeoMIP.py</p>\n\n<p><strong>Figure S13:</strong><br>\nrapidVsFeedbackAPRP.py</p>\n\n<p><strong>Other scripts and modules that the above scripts depend on: </strong><br>\nAPRP.py <br>\ncalculateClimatologiesForRadiativeKernels.py <br>\ncorrectCESM_rlut.py <br>\nfind_rlut_correction.py <br>\ngeomipFunctions.py <br>\nsaveModelLatsLons.py <br>\nzonalMeanCloudFraction_CSIRO.py <br>\nzonalMeanCloudFraction_HadGEM2-ES.py </p>\n\n<p> </p>\n\n<p>A standalone version of the APRP code can be found at <a href=\"https://github.com/rdrussotto/pyAPRP\">https://github.com/rdrussotto/pyAPRP</a>, with further documentation.</p>", "author": [ { "family": "Russotto, Rick" } ], "type": "article", "id": "1328272" }
All versions | This version | |
---|---|---|
Views | 271 | 196 |
Downloads | 576 | 460 |
Data volume | 13.8 MB | 10.9 MB |
Unique views | 239 | 181 |
Unique downloads | 294 | 225 |