Dataset Open Access

TUT Acoustic Scenes 2017 Features

Heittola, Toni; Mesaros, Annamaria; Virtanen, Tuomas


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">computational auditory scene analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">acoustic scene classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">acoustic features</subfield>
  </datafield>
  <controlfield tag="005">20200124192556.0</controlfield>
  <controlfield tag="001">1324390</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tampere University of Technology</subfield>
    <subfield code="0">(orcid)0000-0002-6640-9752</subfield>
    <subfield code="a">Mesaros, Annamaria</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tampere University of Technology</subfield>
    <subfield code="a">Virtanen, Tuomas</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tampere University of Technology</subfield>
    <subfield code="4">col</subfield>
    <subfield code="a">Fagerlund, Eemi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tampere University of Technology</subfield>
    <subfield code="4">col</subfield>
    <subfield code="a">Hiltunen, Aku</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tampere University of Technology</subfield>
    <subfield code="4">prc</subfield>
    <subfield code="a">Heittola, Toni</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">33513</subfield>
    <subfield code="z">md5:bdbfd4a42a4d911c303cd27c28e22471</subfield>
    <subfield code="u">https://zenodo.org/record/1324390/files/TUT-acoustic-scenes-2017-features.doc.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">881979236</subfield>
    <subfield code="z">md5:c9362bebb999afed363e563b19702f34</subfield>
    <subfield code="u">https://zenodo.org/record/1324390/files/TUT-acoustic-scenes-2017-features.features.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">59467</subfield>
    <subfield code="z">md5:78458855f531e98951c34c9e904b2fe9</subfield>
    <subfield code="u">https://zenodo.org/record/1324390/files/TUT-acoustic-scenes-2017-features.meta.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-07-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-tut-arg</subfield>
    <subfield code="o">oai:zenodo.org:1324390</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Tampere University of Technology</subfield>
    <subfield code="0">(orcid)0000-0002-8855-0415</subfield>
    <subfield code="a">Heittola, Toni</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">TUT Acoustic Scenes 2017 Features</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tut-arg</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">637422</subfield>
    <subfield code="a">Computational Analysis of Everyday Soundscapes</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;TUT Acoustic Scenes features dataset consists of feature matrices extracted for 10-seconds audio segments from 15 acoustic scenes:&amp;nbsp;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Bus - traveling by bus in the city (vehicle)&lt;/li&gt;
	&lt;li&gt;Cafe / Restaurant - small cafe/restaurant (indoor)&lt;/li&gt;
	&lt;li&gt;Car - driving or traveling as a passenger, in the city (vehicle)&lt;/li&gt;
	&lt;li&gt;City center (outdoor)&lt;/li&gt;
	&lt;li&gt;Forest path (outdoor)&lt;/li&gt;
	&lt;li&gt;Grocery store - medium size grocery store (indoor)&lt;/li&gt;
	&lt;li&gt;Home (indoor)&lt;/li&gt;
	&lt;li&gt;Lakeside beach (outdoor)&lt;/li&gt;
	&lt;li&gt;Library (indoor)&lt;/li&gt;
	&lt;li&gt;Metro station (indoor)&lt;/li&gt;
	&lt;li&gt;Office - multiple persons, typical work day (indoor)&lt;/li&gt;
	&lt;li&gt;Residential area (outdoor)&lt;/li&gt;
	&lt;li&gt;Train (traveling, vehicle)&lt;/li&gt;
	&lt;li&gt;Tram (traveling, vehicle)&lt;/li&gt;
	&lt;li&gt;Urban park (outdoor)&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;Dataset is split into **Train set** and **Test set**. Each acoustic scene in the Train set has 300 segments, and Test set has 100 segments. The dataset contains similar material to other TUT Acoustic Scenes 2017 datasets: TUT Acoustic Scenes 2017 development dataset and TUT Acoustic Scenes 2017 evaluation dataset. All these &amp;nbsp;datasets are composed from same pool of original audio recordings, but exact audio segments selected for the datasets differ.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1324389</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1324390</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
214
79
views
downloads
All versions This version
Views 214214
Downloads 7979
Data volume 28.2 GB28.2 GB
Unique views 199199
Unique downloads 4848

Share

Cite as