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Abstract  1 

Microbial community plays critical roles in driving soil carbon (C) cycling in terrestrial 2 

ecosystems. However, we lack empirical evidence to demonstrate the role of microbial 3 

community in driving soil respiration -a key ecosystem process for global sustainability and 4 

climate regulation. Here, we used a long-term field experiment including multiple 5 

management practices, to identify, via statistical modeling, the role of microbial community 6 

composition in influencing soil respiration. We analyzed major soil properties and microbial 7 

(both bacterial and fungal) abundance, diversity and community composition. We found that 8 

different management regimes led to different soil respiration rates. Most importantly, 9 

microbial community composition explained a unique portion of the variation in soil 10 

respiration, which cannot be accounted for by key respiration drivers such as soil properties 11 

and other microbial attributes (richness and total abundance). Microbial biomass and fungal 12 

richness were also identified as key drivers of soil respiration. Our results indicate that 13 

inclusions of microbial compositional data in Earth system models can be potentially used to 14 

improve our capacity to predict changes in soil C balance under changing environments.  15 

 16 
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1. Introduction 19 

Soils store four times as much carbon (C) as plant and atmospheric pools (Singh et al., 2010; 20 

Karhu et al., 2014), and soil respiration releases about 60 Pg C annually from the land surface 21 

(Shao et al., 2013). Both C sequestration and soil respiration are critical processes controlling 22 

key ecosystem functions such as climate regulation, nutrient cycling and plant productivity 23 

(Singh et al., 2010; Victoria et al., 2012; Trivedi et al., 2017). Global climate change and 24 

human disturbances including intensive agricultural practices are increasing the amount of C 25 

emitted to the atmosphere with important implications for the climate regulation of Earth 26 

(Nazaries et al., 2015; Spohn et al., 2016). Because of this, predictions of soil C balance in 27 

terrestrial ecosystems have become a global priority during the last decades with the 28 

development of Earth system models as primary tools (Luo et al., 2016).  29 

Soil respiration is driven by both biotic and abiotic factors (Walker et al., 2004; Monson 30 

et al., 2006; Orwin et al., 2015). Previous studies have demonstrated the importance of 31 

geographic location (Campbell et al., 2004; Whitaker et al., 2014), climate (temperature and 32 

rainfall) (García-Palacios et al., 2012; Karhu et al., 2014), soil properties (Delgado-Baquerizo 33 

et al., 2016a) and plant features (Raich and Tufekciogul, 2000; Knowles et al., 2015) as key 34 

predictors of soil respiration. However, current models are not able to accurately predict the 35 

variation in soil stocks and respirations, leading to a high level of uncertainty for these 36 

predictions. Identifying new major predictors of soil respiration that allow the improvement 37 

of predictive models is one of the major challenges that we are facing today. Most recently, 38 

the inclusion of microbial processes (reflected by microbial biomass and enzyme activities) 39 

has been reported to improve the prediction of soil C fluxes at the global scales (Allison et al., 40 

2010; Wieder et al., 2013). Similarly, microbial diversity has been reported to drive multiple 41 

soil functions including soil respiration (Delgado-Baquerizo et al., 2016b; Liu et al., 2017). 42 

Further, in addition to microbial biomass and diversity, other microbial parameters such as 43 

community composition (relative abundance of phylotypes) may greatly improve our 44 

prediction for soil respiration (Whitaker et al., 2014), given the strong positive relationships 45 

between microbial composition and the functional genes that regulate soil respiration (Trivedi 46 

et al., 2016). However, the importance of soil microbial community composition in driving 47 

soil respiration remains poorly understood and largely unexplored; and no experimental 48 
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approach has been used to address this important gap of knowledge.  49 

A growing number of studies had emphasized the significance of microbial community 50 

composition in driving soil processes and functions including gaseous emission, 51 

decomposition, nutrient cycling and plant production (Fierer et al., 2007; Peter et al., 2011; 52 

Trivedi et al., 2013; Trivedi et al., 2016). We argue that current knowledge on microbial life 53 

strategies and functional attributes can be used to markedly improve our prediction of soil 54 

respiration rates. For example, previous studies suggested that ecological functional 55 

categories of copiotrophs and oligotrophs have specific roles in utilizing soil organic C (SOC) 56 

for respiration (Fierer et al., 2007; Ramirez et al., 2012; Trivedi et al., 2013). Thus, 57 

copiotrophs such as Bacteroidetes, Alphaproteobacteria and Gammaproteobacteria are 58 

expected to have higher respiration rates compared to oligotrophs including Actinobacteria, 59 

Acidobacteria and Deltaproteobacteria (Fierer et al., 2007; Bastian et al., 2009; Singh et al., 60 

2010; Trivedi et al., 2013). In addition, bacteria are considered to have lower C use efficiency 61 

compared to fungi (Austin et al., 2004; Waring et al., 2013). All these suggest that differences 62 

in microbial community composition could potentially explain a unique portion of the 63 

variation in soil respiration.  64 

Herein, we posit that community composition of fungi and bacteria can potentially help 65 

explain unique portions of the variation in soil respiration which cannot be accounted for by 66 

other key drivers of soil respiration including soil properties, land management practices (i.e. 67 

inorganic and organic fertilization) and other key microbial attributes such as microbial 68 

biomass or community richness. To test our hypothesis, we collected soils from a long-term 69 

field experiment including multiple combined applications of inorganic and organic fertilizers 70 

including nitrogen (N), phosphorus (P) and potassium (K) (NPK), livestock manure, wheat 71 

straw, and commercial organic fertilizers. These agricultural practices are well-known to 72 

simultaneously modify soil abiotic properties, microbial biomass, and community richness 73 

and composition (Sun et al., 2015; 2016), which in turn provides a unique opportunity to 74 

empirically identify the role of relative importance of soil microbial community in driving 75 

soil respiration responses to the combined fertilization after accounting for key soil 76 

properties. 77 
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2. Materials and Methods 78 

2.1 Experimental design and soil sampling 79 

The long-term experiment was established in Linquan county, Anhui province, China 80 

(33°04′58N, 115°13′42E), in October 2010. Mean annual temperature in this region is 15.3°C 81 

and mean annual precipitation is 892 mm. The experimental plots (10 × 5 m in size) were 82 

subject to wheat-corn rotation, and the locations were selected using a randomization 83 

approach. The soil in this site belongs to a lime concretion black soil (Eutric Acrisols) (Zhang 84 

et al., 2016), with 23% clay and 48% silt content. The initial pH of the soil was 5.72, which 85 

had 0.73% organic C, 80.16 mg kg-1 available N, 16.92 mg kg-1 available P and 116.7 mg kg-1 86 

available K. This experiment included nine treatments with three replicate plots for each: (1) 87 

control, no fertilization; (2) chemical NPK fertilizers application (NPK); (3) 50% NPK 88 

fertilizers plus 6000 kg fresh cow manure ha-1 y-1 (NPK+CM); (4) 50% NPK fertilizers plus 89 

6000 kg fresh pig manure ha-1 y-1 (NPK+PM); (5) NPK fertilizers plus all of preceding crop 90 

wheat straw (NPK+ST); (6) 50% NPK fertilizers plus 6000 kg pig manure and wheat straw 91 

from all of preceding crop (NPK+PM+ST); (7) 50% NPK fertilizers plus 6000 kg cow 92 

manure and wheat straw from all of preceding crop (NPK+CM+ST); (8) 30% NPK fertilizers 93 

plus 3600 kg commercial organic fertilizer ha-1 y-1(NPK+OCM), which is made of cow 94 

manure; (9) 30% NPK fertilizers plus 3600 kg commercial organic fertilizer (NPK+OPM), 95 

which is made of pig manure. The NPK fertilizer comprised urea (300 kg N ha-1 y-1), 96 

superphosphate (120 kg P2O5 ha-1 y-1) and potassium chloride (100 kg K2O ha-1 y-1). These 97 

different proportions of NPK fertilizers with corresponding organic matter were applied to 98 

manipulate the relative balance of nutrients in the soil for crop growing. All chemical 99 

fertilizers and organic matter were applied once before sowing of the winter wheat in October, 100 

and the quantities of nutrient yearly added to the plots is showed in Table S1. The wheat 101 

straws were cut into small pieces of ~10 cm in length before use. Surface soil (0-15 cm) from 102 

each plot was collected in June 2016 after the harvest of wheat (Triticum spp.). Soil samples 103 

were sealed in plastic bags, and shipped back to the laboratory in an iced cooler. All the soil 104 

samples were mixed homogenously, passed through a 2.0 mm sieve, followed by dividing 105 

into two sub-samples. One sub-sample was stored at -20 °C for microbial analysis, and 106 
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another sub-sample was stored at 4°C for the analysis of soil properties.  107 

2.2 Soil properties and respiration rate analysis 108 

Soil water content was determined by oven-drying the samples at 105°C, and soil texture was 109 

analyzed using the pipette method (Gee and Bauder,1986). Soil pH was measured using a 110 

fresh soil to water ratio of 1: 2.5 with a Delta pH-meter, and soil organic carbon (SOC) was 111 

determined using the K2CrO7 oxidation titration method (Walkley & Black 1934). Total 112 

carbon (TC) and total nitrogen (TN) were measured on a LECO macro-CN analyzer (LECO, 113 

St. Joseph, MI, USA). Inorganic N and labile carbon in the soils were extracted with 0.5 M 114 

K2SO4 in a ratio of 1:5 by shaking at 200 rpm for 1 h and filtered through 0.45-μm Millipore 115 

filter paper. Total C and N concentrations in the extracts were analyzed by TOC analyzer 116 

with total nitrogen unit (TOC-L Analyzer, Shimadzu, Japan). In parallel, the carbon in 117 

microbial biomass (MBC) was determined using the fumigation-extraction method (Vance et 118 

al., 1987). For each measurement of respiration rate, approximately 10 g of fresh soil (within 119 

48 h after sampling) was incubated in a 120 ml container at 25 °C for 24 h. At the end of this 120 

period, CO2 concentrations in headspace were measured using an Agilent-7890a gas 121 

chromatograph equipped with a flame ionization detector (FID) and an electron capture 122 

detector (ECD) (Agilent Technologies, Wilmington, DE, USA). Soil respiration rates were 123 

calculated from the net accumulation of CO2 over time. 124 

2.3 Soil microbial community characterization  125 

The total genomic DNA was extracted from 0.30 g of soil using the MoBio PowerSoil DNA 126 

Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) following the manufacturer 127 

instructions. The concentration and quality of isolated DNA was checked using a NanoDrop® 128 

ND-2000c UV-Vis spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). The 129 

abundance of bacteria and fungi were evaluated by quantifying 16S rRNA and ITS gene copy 130 

number on an iCycler iQ5 thermocycler (Biorad, USA) using the primer pairs 131 

Eub338F/Eub518R (Cregger et al., 2012) and ITS1-5.8S (Fierer et al., 2005), respectively.  132 

To evaluate the microbial community composition, the V4 region of the bacterial 16S 133 

rRNA gene and ITS of fungi were amplified using the primer pairs of 338F/806R (Liu et al., 134 
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2016) and ITS1F /2043R (Zhao et al., 2016b), respectively. The 50 μl PCR reaction mixtures 135 

consisted of 25 μl PremixTaq™ (Takara Biotechnology, Dalian, China), 1 μl of each primer 136 

(10 μM), 3 μl of template DNA, and 20 μl of sterilized ddH2O. The resultant PCR products 137 

were purified using the Wizard® SV Gel and PCR Clean-Up System (Promega, San Luis 138 

Obispo, USA). The purified amplicons were equimolarly mixed, and 2 × 250 bp paired-end 139 

sequencing was carried out on an Illumina Miseq sequencer (Illumina Inc., San Diego, USA). 140 

Raw reads generated from the MiSeq paired-end sequencing were merged together using the 141 

Fast Length Adjustment of Short reads (FLASH). A chimera filtering approach UPARSE was 142 

employed as the Operational Taxonomic Unit (OTU) picking strategy at 97% sequence 143 

similarity. Representative sequences from individual OTUs generated in UPARSE were 144 

processed using the Quantitative Insights into Microbial Ecology (QIIME) pipeline. The 145 

resultant OTU map file was converted into a biom file for diversity calculation in QIIME. A 146 

resampling procedure was conducted at a depth of 51,438 sequences for bacteria and 52,561 147 

for fungi per sample before diversity calculation. Bacterial and fungal diversity index were 148 

calculated based on 97 % OTU similarity of obtained bacterial and fungal sequences, 149 

respectively. The taxonomic identity of each phylotype was determined using 150 

the SILVA ribosomal RNA gene database project (Quast et al., 2013).  151 

2.4 Statistical analyses  152 

ANOVA was used to evaluate the effect of different fertilization treatments on the respiration 153 

rate. Spearman’s correlation analyses were performed to assess the relationships between soil 154 

properties, respiration and bacterial and fungal community including abundance, diversity 155 

and composition. The 16S rRNA and ITS gene copy numbers were log-transformed prior to 156 

statistical analysis to meet normality assumptions.  157 

We conducted a classification random forest analysis (Breiman, 2001), as done in 158 

Trivedi et al. (2016), to identify the major statistically significant microbial predictors of the 159 

composition (relative abundance: number of sequences of major phyla/class level) of bacteria 160 

and fungi. These analyses were conducted using the rfPermute package (Archer, 2016) of the 161 

R statistical software (http://cran.r-project.org/). The random forest model determined the 162 

importance of each predictor variable via evaluating the decrease in prediction accuracy (i.e. 163 
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increase in the mean square error between observations and OOB predictions) when the data 164 

for that predictor are randomly permuted, as previously described (Delgado-Baquerizo et al., 165 

2015). 166 

To examine the importance of microbial community attributes for soil respiration 167 

compared with soil properties, we used a multi-model inference approach based on 168 

information theory and non-parametric distance based linear regressions (DISTLM; 169 

(McArdle and Anderson, 2001). In particular, this analysis provided insights on whether the 170 

microbial community composition in our models provides additional predictive strength for 171 

soil respiration after accounting for other important soil factors. The phyla/classes included in 172 

the models were statistically significant predictors of the respiration rate from classification 173 

random forest analysis (Table 1). The Euclidean distance was used as the measure of 174 

dissimilarity in soil respiration between pairs of samples. We ranked best-fitting models that 175 

could be generated with our independent variables according to the second-order Akaike 176 

information criterion (AICc). The lower the AICc index the better the model. Here, we 177 

consider a ΔAICc >2 threshold to differentiate between two substantially different models 178 

and then select the best of those models (Burnham and Anderson, 2003). Then, we compared 179 

the AICc of the best model which presumably includes soil properties and microbial 180 

community to that of the corresponding models without microbial community composition. 181 

Differences < 2.0 in AICc between alternative models indicate that they are approximately 182 

equivalent in explanatory power (Burnham and Anderson, 2003). We conducted 183 

distance-based multimodel inference with the PRIMER V6 statistical package for Windows 184 

(PRIMER-E Ltd., Plymouth Marine Laboratory, UK). 185 

We used structural equation model (SEM) to evaluate the direct and indirect effect of the 186 

microbial community and soil properties on soil respiration in response to different 187 

fertilization treatments. The SEM allows us to partition causal influences among multiple 188 

variables, and to separate the direct and indirect effects of the predictors included in the 189 

model; ultimately providing mechanistic information on the drivers of soil respiration (Grace, 190 

2006). We established an a priori model according to our current knowledge of abiotic and 191 

biotic impact on soil respiration (Fig. S1). We only included those variables that were 192 

identified as statistically significant predictors of the respiration rate from random forest 193 
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analysis and distance-based best-fitting model. The data matrix was fitted to the model using 194 

the maximum-likelihood estimation method. There is no single universally accepted test of 195 

overall goodness of fit for SEM. Thus, we used the Chi-square test (χ2; the model has a good 196 

fit when 0 ≤ χ2/d.o.f ≤ 2 and 0.05 < P ≤ 1.00) and the root mean square error of 197 

approximation (RMSEA; the model has a good fit when RMSEA 0 ≤ RMSEA ≤ 0.05 and 198 

0.10 < P ≤ 1.00 (Schermelleh-Engel et al., 2003). We also calculated the standardized total 199 

effects of microbial predictors, soil properties, and fertilization treatments on the soil 200 

respiration. The net influence that one variable has upon another is calculated by summing all 201 

direct and indirect pathways between the two variables. If the SEM fits the data well, the total 202 

effect should approximate to the bivariate correlation coefficient for that pair of variables 203 

(Grace 2006). The SEM analyses were performed using AMOS 21.0 (SPSS Inc., Chicago, IL, 204 

USA).  205 

3. Results  206 

3.1 Soil respiration rates and its relationship with soil properties 207 

As expected, different fertilization regimes led to different levels of soil respiration rate (Fig. 208 

1, P = 0.001). The highest soil respiration rate was found in the treatment with 209 

NPK+PM+STR (Fig. 1). Across all treatments, soil respiration rate was related to soil pH and 210 

SOC (Table 2, P < 0.05). These soil properties also varied in response to the different 211 

fertilization treatments (Table 3).  212 

3.2 Unique role of soil microbial community composition in predicting soil respiration rates 213 

Using random forest modeling, we identified the major bacterial and fungal phyla/classes for 214 

predicting soil respiration (Fig. 2, P < 0.05). These taxa include several bacterial phyla such 215 

as Alphaproteobacteria, WPS.2 and Deltaproteobacteria. Soil respiration rate was highly 216 

correlated to other microbial attributes too (Table 4, P < 0.05). Particularly, there were 217 

significant relationships between the respiration and microbial biomass, bacterial abundance, 218 

bacterial community and richness, and fungal community and richness. 219 

The best-fitting distance-based model accounted for 78% of the variation in soil 220 

respiration and included both soil properties (C and C: N ratio) and microbial attributes 221 

(community composition and fungal richness, Table 5). Most importantly, our model 222 
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provided evidence that microbial community composition accounted for a unique portion of 223 

the variation in soil respiration that cannot be accounted for by soil properties, or other key 224 

microbial attributes such as microbial biomass, abundance, and diversity. Thus, all models 225 

excluding microbial composition showed higher AICc values (AIC > 6.26). The best-fitting 226 

model first identified Alphaproteobacteria and Bacteroidetes as major microbial taxa 227 

predicting soil respiration (Table 5). Our models further suggest that, besides microbial 228 

composition, other microbial attributes such as microbial biomass carbon and fungal richness 229 

were also important factors determining soil respiration, as they were included in the 230 

best-fitting models.  231 

3.3 Mechanistic understanding on the role of microbial composition in driving soil 232 

respiration rates 233 

We used the SEM to account for direct and indirect effects of management practices, soil 234 

properties and microbial attributes on driving soil respiration, and therefore, to obtain a 235 

system-level mechanistic understanding on the drivers of soil respiration. Our SEM explained 236 

92% of the variance in the soil respiration, parameterized using predictors from the 237 

best-fitting distance-based model. Soil properties, microbial composition, and fungal richness 238 

have strong direct effects on soil respiration (Fig. 3a). However, fertilization treatment mostly 239 

had indirect impacts on soil respiration through soil properties, microbial community 240 

composition (i.e. Alphaproteobacteria and Bacteroidetes) and fungal richness. Overall, the 241 

most important microbial attributes controlling soil respiration rates were the relative 242 

abundances of Alphaproteobacteria and Bacteroidetes, and fungal richness (Fig. 3b). 243 

4. Discussion  244 

Our study provides direct experimental evidence that soil microbial community composition 245 

plays a unique role in predicting soil respiration rates after accounting for key soil properties, 246 

multiple fertilization treatments and other key microbial attributes such as microbial biomass 247 

and richness. In particular, taxa from proposed copiotrophic Alphaproteobacteria and 248 

Bacteroidetes (Fierer et al., 2007; Trivedi et al., 2013) were selected as the major microbial 249 

predictors of soil respiration according to the best-fitting models. These fast-growing 250 

copiotrophic organisms had been suggested to have higher C use efficiency than other taxa 251 

belonging to slow-growing oligotrophic organisms (Fierer et al., 2007; Ramirez et al., 2012). 252 
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We thus identified their relative importance in driving soil respiration compared to other key 253 

drivers of respiration. Our findings also provide evidence from an experimental approach that 254 

the inclusion of microbial community composition in Earth system model could potentially 255 

improve our capacity to predict C feedbacks (e.g soil C respiration) in terrestrial ecosystems. 256 

Here, we demonstrated that changes in microbial community composition can help 257 

explain a unique proportion of the variation in soil respiration. This interesting result implies 258 

that major soil properties such as pH, C and C: N ratio, which are well-known to drive both 259 

soil respiration rates and microbial community composition (Table 2, Table 6) (Fierer and 260 

Jackson, 2006; Lauber et al., 2009; Maestre et al., 2015), were not able to account for the 261 

variation in soil respiration explained by microbial community composition. The major 262 

microbial predictors of soil respiration were identified through the distance-based 263 

multi-model inference, a statistical approach which is specially recommended to identify key 264 

predictors explaining a unique portion of the variation in a particular response variable that 265 

cannot be explained by other predictors (DISTLM; McArdle & Anderson 2001). Our results 266 

suggest a direct link between microbial community composition and soil respiration rates 267 

potentially linked to particular microbial life strategies and functional capabilities (Trivedi et 268 

al., 2016).  269 

We identified major microbial taxa predicting soil respiration including several bacterial 270 

phyla and fungal Ascomycota phylum based on the random forest model analysis (Fig. 2). 271 

Further, both proposed taxa (Alphaproteobacteria and Bacteroidetes) from the best-fitting 272 

model belong to fast-growing copiotrophs, which have been reported to be important drivers 273 

of soil respiration rates (Fierer et al., 2007). We also used SEM to achieve a system-level 274 

understanding on the role of microbial community composition in driving soil respiration 275 

when considering human management, soil properties and other key microbial drivers 276 

selected by our best-fitting distance-based models. Our SEM provided further evidence that 277 

class Alphaproteobacteria had the strongest direct effect on soil respiration, which was also 278 

modulated directly or indirectly via changes in fungal richness and land management. These 279 

results suggest that drawing upon life-strategies, the relative abundance of key microbial taxa 280 

at the highest taxonomic rank can be used to improve predictions in soil C respiration and 281 

balance in terrestrial ecosystems. These results suggest that these taxa could potentially 282 
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influence soil C respiration rates under climate change and land use intensification scenarios 283 

through shifting soil microbial community composition. In addition, significant positive 284 

relationship of fungal richness with soil respiration rates (Fig. 3b) further suggests fungal role 285 

in driving C cycling. These results support the growing literature that demonstrates the 286 

important roles of fungal diversity in driving soil functions (Wagg et al., 2014; 287 

Delgado-Baquerizo et al., 2016b). Our observations are also in accord with previous studies 288 

suggesting that fungi have stronger potential in degrading available and complex forms of C 289 

and N, attributing to their relatively strong hyphal growth form and enzymatic capacities (de 290 

Boer et al., 2005). All of these observations are in line with recent studies suggesting the 291 

significance of soil microbial community for controlling ecosystem sustainability and 292 

multiple functions (Delgado-Baquerizo et al., 2016b; Liu et al., 2017).  293 

Finally, our SEM demonstrates that fertilization treatments can indirectly drive soil 294 

respiration through changing microbial community composition. Thus, any alteration of 295 

dominant microbial taxa may result in subsequent changes in soil respiration, with 296 

implications for the balance of terrestrial ecosystems. For example in this study, as one of 297 

important microbial drivers of soil respiration, Bacteroidetes were suppressed by NPK 298 

fertilization (Fig. 3a), which is a traditional agricultural practice for improving crop 299 

productivity. Recently, application of organic matter has become a prevailing strategy for 300 

improving soil fertility and mitigating soil degradation resulting from single chemical 301 

fertilization (Reeves, 1997; Yadvinder-Singh et al., 2004; Zhao et al., 2016a). Chemical NPK 302 

combined with commercial organic fertilizers (NPK+OCM) were also found to strongly 303 

influence the richness of soil fungal communities, another major drivers of soil respiration in 304 

our study (Fig. 3a). Overall, our results provide important information for land managers to 305 

maintain C balance in terrestrial ecosystems.  306 

Taken together, our study provides experimental evidence that microbial community 307 

composition explained a unique portion of the variation in soil respiration which cannot be 308 

accounted for by soil properties and human land management - the major drivers of soil 309 

respiration. We further provide new insights into the role of key microbial taxa in driving soil 310 

respiration, with implications for the prediction of this key soil process under global change 311 

scenarios. These taxa could be potentially used to modulate soil respiration directly via soil 312 
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inoculum or indirectly via land management. Our findings have important implications for 313 

improving our ability to predict soil C balance using Earth system models, and future studies 314 

will need to test our hypothesis in observational datasets at the global scale.    315 
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Table 1. Complete list of predictors used for the distance-based multi-modeling approach. 
Predictor Group Variable Abbreviature Units 
1 Soil properties Soil water content  SWC % 
2 pH pH Unitless 
3 Soil total carbon TC % 
4 ratio soil C:N C:N Unitless 
5 Soil organic carbon SOC g kg-1 
6 Labile carbon LC mg kg-1 
7 Biomass and diversity Microbial biomass carbon MBC mg kg-1 
8 Abundance of fungi (qPCR) Fungi abundance gene copies g-1  
9 Abundance of bacteria (qPCR) Bacteria abundance gene copies g-1  
10 Richness of fungi Richness fungi Number of OTUs 
11 Richness of bacteria Richness bacteria Number of OTUs 
12 Community composition Fibrobacteres Fibrobacteres % 
13 Bacteroidetes Bacteroidetes % 
14 Acidobacteria Acidobacteria % 
15 Cyanobacteria Cyanobacteria % 
16 Actinobacteria Actinobacteria % 
17 Betaproteobacteria Betaproteobacteria % 
18 WS6 WS6 % 
19 Latescibacteria (WS3) Latescibacteria (WS3) % 
20 Deltaproteobacteria Deltaproteobacteria % 
21 WPS.2 WPS.2 % 
22  Alphaproteobacteria Alphaproteobacteria % 
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Table 2 Correlation coefficients (Spearman’s ρ) between soil properties and soil respiration. 
SWC, soil water content; SOC, soil organic carbon; LC, labile organic carbon; P values 
below 0.05 are in bold. 

 

Soil properties ρ P 

SWC 0.083  0.681  

pH 0.567  0.002  

TC -0.050  0.804  

C:N -0.026  0.899  

SOC 0.388  0.046  

Inorganic N 0.279  0.158  

LC 0.166  0.408  
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Table 3 Soil basic properties from the different fertilization treatments. TC and TN, total carbon and total nitrogen, respectively; SOC, soil organic carbon; 

LC, labile carbon. Control, no fertilization; NPK, chemical NPK fertilizers; NPK+PM, NPK fertilizers plus fresh pig manure; NPK+CM, NPK fertilizers 
plus fresh cow manure; NPK+ST, NPK fertilizers plus wheat straw; NPK+PM+ST, NPK fertilizers plus fresh pig manure and wheat straw; NPK+CM+ST, 

NPK fertilizers plus fresh cow manure and wheat straw; NPK+OPM, NPK fertilizers plus commercial organic fertilizer that is made of pig manure; 

NPK+OCM, NPK fertilizers plus commercial organic fertilizer that is made of cow manure. Variables do not share the same letter are significantly different 

(P < 0.05) 

Treatments  pH 
TN  

(%) 

TC  

(%) 
C:N SOC (g kg-1) 

Inorganic N  

(mg kg-1) 

LC  

(mg kg-1) 

Control 5.86 ± 0.03a 0.13 ± 0.01a 1.23 ± 0.03a 9.73 ± 0.02a 7.31 ± 0.65a 1.99 ± 2.21a 65.63 ± 3.46a 

NPK 5.03 ± 0.02b 0.16 ± 0.01b 1.68 ± 0.02b 10.65 ± 0.06b 7.30 ± 0.40a 30.98 ± 1.67b 78.21 ± 2.10b 

NPK+PM 5.74± 0.04c 0.17 ± 0.02b 1.79 ± 0.01c 10.38 ± 0.07b 10.20 ± 1.20b 57.69 ± 17.90c 73.80 ± 3.82b 

NPK+CM 5.85± 0.02a 0.16 ± 0.03b 1.46 ± 0.02d 9.16 ± 0.05c 14.17 ± 2.21b 25.35 ± 7.50b 82.42 ± 7.31b 

NPK+STR 5.07± 0.01d 0.15 ± 0.03b 1.58 ± 0.01e 10.36 ± 0.10b 10.97 ± 1.30b 17.00 ± 2.38d 87.74 ± 5.68b 

NPK+PM+STR 5.31± 0.03e 0.16 ± 0.02b 2.22 ± 0.02f 14.31 ± 0.09d 12.40 ± 1.31b 27.44 ± 3.00bc 87.59 ± 2.42b 

NPK+CM+STR 5.21± 0.05e 0.19 ± 0.01bc 1.74 ± 0.03c 9.22 ± 0.08c 10.78 ± 1.03ab 25.63 ± 1.09bc 87.28 ± 6.74b 

NPK+OPM 4.75± 0.02f 0.24 ± 0.02c 2.78 ± 0.02g 11.77 ± 0.12e 8.43 ± 5.29ab 9.17 ± 1.41e 81.20 ± 3.99b 

NPK+OCM 4.74± 0.02f 0.16 ± 0.03b 1.50 ± 0.03d 9.61 ± 0.04a 8.57 ± 3.46ab 14.13 ± 0.22d 86.09 ± 2.86b 
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Table 4 Correlation coefficients (Spearman’s ρ) between soil microbial traits and soil 
respiration. MBC, microbial biomass carbon (µg g-1). Bacterial and fungal abundance were 
calculated from 16S rRNA and ITS gene copies g-1 soil, respectively. NMDS, non-metric 
multidimensional scaling ordination derived from the on Bray-Curtis similarities depicting 
the bacterial and fungal community compositions. P values below 0.05 are in bold.  
 

Microbial community ρ P 
MBC  0.710 <0.001 
Bacterial abundance  0.400 0.039  
Fungal abundance  0.163  0.417  
Bacterial NMDS 1 -0.543 0.003  
Bacterial NMDS 2 -0.030 0.881  
Fungal NMDS 1 -0.556 0.003  
Fungal NMDS 2 -0.311 0.115  
Bacterial richness 0.521 0.005  
Fungal richness 0.470 0.013  
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Table 5 Best-fitting models including/excluding microbial community composition as predictors of soil respiration. Model A is the best-fitting 
model including microbial community composition. Model B is the same model as the best model A, but excludes microbial composition. Model 
C is the best model when microbial community is taken out of the equation, but microbial diversity and soil properties are freely included. 
Models are ranked by AICc. AICc measures the relative goodness of fit of a given model; the lower its value, the more likely the model to be 
correct. ΔAICc are difference between the AICc of each model and that of the best model, and ΔAICc >2 threshold indicates two different 
models. 

Models Microbial Composition Microbial diversity Soil properties R2 AICc ΔAICc 

A 
Alphaproteobacteria + 

Fungal richness TC + C:N 0.780 -23.47 
  Bacteroidetes 

B Excluded Fungal richness TC + C:N 0.649 -17.21 6.26 

C Excluded Fungal richness pH + TC + C:N 0.714 -19.75 3.72 
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Table 6 Correlation coefficients (Spearman’s ρ) between main microbial predictors and soil 
properties. P values below 0.05 are in bold. 
 

  SWC pH TC C:N SOC Inorganic N LC 
Fungal richness -0.508 0.694 0.16 -0.21  0.322 0.436 -0.18  

.007 .000 0.425 0.304 0.102 0.023 0.376 
Alphaproteobacteria 0.483 -0.499 .327 0.681 -0.18  -0.27  0.189 

.011 .008 0.096 0 0.377 0.174 0.346 
Bacteroidetes -0.35  0.459 -.030 -0.32  0.681 0.269 0.458 

0.077 0.016 0.882 0.101 0 0.174 0.016 
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Fig. 1 Soil respiration rates under different treatment regimes. Control, no fertilization; NPK, 
chemical NPK fertilizers; NPK+PM, NPK fertilizers plus fresh pig manure; NPK+CM, NPK 
fertilizers plus fresh cow manure; NPK+ST, NPK fertilizers plus wheat straw; NPK+PM+ST, 
NPK fertilizers plus fresh pig manure and wheat straw; NPK+CM+ST, NPK fertilizers plus 
fresh cow manure and wheat straw; NPK+OPM, NPK fertilizers plus commercial organic 
fertilizer that is made of pig manure; NPK+OCM, NPK fertilizers plus commercial organic 
fertilizer that is made of cow manure. 
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Fig. 2 Predictor importance (percentage of increase of mean square error, MSE) of major 
bacterial and fungal phyla/classes as drivers of soil respiration based on random forest model.  
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Fig. 3 (a) Structural equation modeling (SEM) showing effects of soil abiotic and biotic 
properties on soil respiration. Black lines and arrows indicate significant positive effect and 
negative effect, respectively. Numbers adjacent to arrows are path directions and coefficients, 
and width of the arrows is proportional to the strength of path coefficients. For simplicity, 
only the largest direct effects of fertilization on soil properties are shown. Minus represents 
negative effect of factors on soil respiration. Significance levels are as follows: aP = 0.06, *P 
< 0.05, **P < 0.01; (b) Relationships between the major microbial parameters and soil 
respiration rates 
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Table S1. The quantities of nutrients yearly added to the plots (10 × 5 m in size) with different treatments. Control, no fertilization; NPK, 
chemical NPK fertilizers; NPK+PM, NPK fertilizers plus fresh pig manure; NPK+CM, NPK fertilizers plus fresh cow manure; NPK+ST, NPK 
fertilizers plus wheat straw; NPK+PM+ST, NPK fertilizers plus fresh pig manure and wheat straw; NPK+CM+ST, NPK fertilizers plus fresh 
cow manure and wheat straw; NPK+OPM, NPK fertilizers plus commercial organic fertilizer that is made of pig manure; NPK+OCM, NPK 
fertilizers plus commercial organic fertilizer that is made of cow manure. 
 
  Control NPK NPK+PM NPK+CM NPK+STR NPK+PM+STR NPK+CM+STR NPK+OPM NPK+OCM 

Total N (kg) 0.00  2.75  1.90  1.61  2.90  2.05  1.76  1.65  1.65  

Total P (kg) 0.00  0.48  0.35  0.29  0.48  0.35  0.29  0.36  0.29  

Total K (kg) 0.00  0.46  0.30  0.26  0.90  0.74  0.70  0.29  0.44  

Total C (kg) 0.00  0.00  10.95  11.19  16.11  27.06  27.31  7.87  8.81  
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Figure S1. a priori model showing effects of soil abiotic and biotic on soil respiration 
 

 

 

 

 


