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Abstract

The role of climatic legacies in regulating commuyrassembly of above- and below-ground
species in terrestrial ecosystems remains largedxplored and poorly understood. Here, we
report on two separate regional and continentaligeap studies, including >500 locations,

aiming to identify the relative importance of clititalegacies (climatic anomaly over the last
20k years) compared to current climates in predicthe relative abundance of ecological
clusters formed by species strongly co-occurrinthiwitwo independent above- and below-
ground networks. Climatic legacies explained a ifigant portion of the variation in the

current community assembly of terrestrial ecosystdop to 15.4%) that could not be

accounted for by current climate, soil propertiesl management. Changes in the relative
abundance of ecological clusters linked to climé&gacies (e.g., past temperature) showed
the potential to indirectly alter other clustersiggesting cascading effects. Our work
illustrates the role of climatic legacies in redulg ecosystem community assembly and
provides further insights into possible winner dosker community assemblies under global

change scenarios.

Keywords. Paleoclimate, Bacteria, Fungi, Plants, Animals, rddrial ecosystems,

Ecological networks.
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I ntroduction

Current climate is known to be one of the majoriemmental filters shaping above and
belowground community assemblies (Schleurghg. 2016), as particular groups of species
only occur under specific ranges of precipitatioml/ar temperature. Nevertheless, climatic
conditions are dynamic, and have been shown tot gibfoundly over millennia.
Consequently, paleoclimatic filtering might havét ke strong signature on the current above-
(plants and animals) and below-ground (bacteriagifuprotists and soil invertebrates)
community assemblies found within ecological neksgoacross entire terrestrial ecosystems.
Although such an argument is intuitive conceptuydlhe relative importance of paloclimatic
legacies (i.e., temperature and precipitation cbffiees from the present to ~20k years ago;
Fordhamet al. 2017) compared with current climate filtering iregicting the assembly of
entire ecological network of above- and below-gaommunities has never been explicitly
tested. Furthermore, no large scale studies haseesgkd this important research question.
Here, we tested the hypothesis that historical aticnlegacies (hereafter ‘climatic legacies’)
explain important parts of the variation in ecosgst aboveground and belowground
community patterns found within ecological netwottkat cannot be accounted for by current
climates.

Studies over the past two decades provide stroiugeese that climatic changes, since
the last glaciation about 10k years ago (Fordieaal. 2017), are partly responsible for the
current distribution of plants, animals and micedlommunities in terrestrial ecosystems
globally (Atkinsonet al. 1987; Svenning J-Cet al. 2015; Lyonset al. 2016; Delgado-
Baquerizoet al. 2017; Partekt al. 2017). Recent studies have also provided solidezwie
that a knowledge of climatic legacies, can improue predictions of the current distribution
of specific groups of organisms including plantd anicrobes (Schleuningt al. 2016;
Delgado-Baquerizet al. 2017; Parteét al. 2017). Much less is known on the role of climatic
legacies in driving ecological networks of abowved #elow-ground organisms. Plant and soill
microbial communities comprise two components & thost important terrestrial food
webs: aboveground and belowground. The first isrdggad for the provision of food and fibre
and the second supports key soil processes sudteaslecomposition and nutrient cycling,
which in turn, supports plant productivity (Wardkeal. 2004; Hoopeet al. 2000; de Vriegt
al. 2012). Because of their enormous functional imgpuare, identifying new predictors that
help explain the distribution of entire biotic comnity assemblies is one of the major
endeavours in which scientists are immersed toddgreover, future projections are

conditional upon the past. Thus, a demonstrable Between climatic legacies and current
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ecosystem community assemblies found within ecoldgnetworks would improve our
capacity to predict how entire ecosystem commuasisemblies might respond to forecasted
climate change, and the extent to which climatiangfed might affect the myriad ecosystem
services these communities provide.

Given the strong links between climatic legaciesl d@ne current distribution of
particular groups of soil microbes and plants (8chinget al. 2016; Delgado-Baquerizet
al. 2017; Partekt al. 2017), we hypothesized that past climates mighe laggered the
current above- and belowground community assemimieterrestrial ecosystems, i.e., the
identity and abundance of coexisting multitrophpeces within ecological networks that
occur today. For example, locations with a posiam@maly in temperature or precipitation
over the last 20k years might have resulted in mptetely different biotic community
assembly compared with locations with a negativeraaly or no change in temperature or
precipitation, even if all these locations share same current climate. If climatic legacies
play a role in regulating the current network oblegical interactions, then climatic legacies
might help to explain particular community asseeblihat cannot be explained using only
current climate data. This unexplained variatiors dtherto generally been ascribed to
stochasticity (e.g., Powedt al. 2015). Thus, climatic legacies might help us tplax why
two locations with a similar current climate do nalivays lead to exactly the same
community assembly.

We argue that Australia is one of the best location Earth to identify the role of
climatic legacies in driving current ecosystem camity assembly for three reasons. First,
Australia has a long history of aboriginal occupat{> 60k years), characterised by a semi-
sedentary, hunter-gatherer lifestyle (Hubbleal. 1983). Compared with other continents,
Australia has a relatively recent history of Eurap@ccupation (~ 200 years) and therefore a
short history of intensive agriculture. Becausa short European history, more than 90% of
Australia’s land mass is still occupied by nativegetation and less than 6% is arable.
Therefore, compared with other continents, the astwof ecological interactions in
Australian ecosystems is more likely to resembles¢hthat existed prior to large-scale
agricultural management. Second, contemporary @gral land use in Australia is
predominantly livestock grazing and cropping, atadistical models are able to account for
the impacts of both land uses on our conclusionsallly, given its continental scale,
Australia experienced a wide range of climatic tega over the past 20k years, including

both positive and negative anomalies in temperatame precipitation variables (see
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examples in Fig. S1). Consequently, Australia ptesienough statistical variability to enable
us to answer our primary research questions.

Herein, we used a combination of ecological netwarkalyses and statistical
modelling to evaluate the relative importance dfmekic legacies compared to current
climates in predicting the relative abundance afipalar ecological clusters of strongly co-
occurring species. Intuitively, we would expect seclusters to include species across
multiple trophic levels and to be good surrogatésexclusive ecosystem community
assemblies. We also aimed to identify the most mapd climatic legacies explaining the
relative abundance of these ecological clusters dastribe examples of specific species-
species interactions within these clusters acrdgsreht trophic groups (predator/prey) and
associations (host/symbiont). To address our reBegmestions, we used two independent
datasets from Australia, which included >500 lowagi at both regional and continental
scales. The first dataset, which included inforomatifrom 108 “natural” locations in eastern
Australia on the composition of plant and animaaes, was used to build an aboveground
(plants and animals) correlation network. The sdadetaset, including 375 “natural” and 60
cultivated locations across mainland Australia,tamed information on the composition of
soil bacteria and eukaryotes (fungi, protists amitlisvertebrates). This dataset was used to
build a belowground correlation network.

Materialsand Methods
Aboveground network

Our aboveground network study was conducted atsit@8 across a large area (> 500°km
of eastern Australia (Fig. S1). This survey waseautaken in three semi-natural woodland
communities dominated by blackbo&ugalyptus largiflorens), white cypress pineCallitris
glaucophylla) and river red gum Hucalyptus camaldulensis). These three communities
include sites used extensively for livestock grgzitarge areas dedicated to conservation
(national parks, nature reserves) and smaller ateasted to native forestry, but excluded
any areas that were cultivated or supported cropthese locations, we undertook multiple
vegetation and animal surveys targeting grassea$s,fovoody plants, birds, mammals,
reptiles, amphibians and invertebrates (see Appedtifor sampling details).

Belowground network

We used a subset of sample locations from the Biofmdustralia Soil Environments
(BASE) project (Fig. S1) for our belowground netkdgsoil bacteria, fungi, protists and soll
invertebrates). This subset includes data on thaposition of bacterial, fungal and

eukaryotic communities across 439 locations belupgo “natural” (379) and agricultural
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(60) (wheat and cotton crops) ecosystems from AlistrSamples were collected between
2011 and 2014. In each location, a 25 x 25m plat established. Soil samples (top 10cm)
were collected according to the methods describefligsettet al. (2016). The community
composition of soil bacteria, fungi, protists amail Snvertebrates was determined using
amplicon sequencing with the lllumina Miseq platfiofsee Appendix S2 for details).

Climate data

For all sites surveyed, we obtained six climatidataes for current climate and climate in
the Last Glacial Maximum from the Worldclim databggww.worldclim.org (Hijmans et

al. 2005). These variables include mean precipita@AP), maximum and minimum
temperature (MAXT and MINT), mean annual precipitatand temperature seasonality
(PSEA and TSEA) and mean diurnal temperature rgiMeR). We selected these six
variables as they provide a good approximatiomefduantity and variability of precipitation
and temperature. In addition, these six variabldsndt suffer from strong multi-collinearity
(Pearson’s r < 0.8Katz 2006. In the case of Last Glacial Maximum climate, wsed
estimates provided by tli@ommunity Climate System Mod@CCSM4;www.worldclim.org
(Bystriakovaet al. 2013; Tallavaarat al. 2015) We used data at 25 minutes resolution

(~4.5km at Equatr as this is the highest resolution availabletifier Last Glacial Maximum
period. Previous studies have demonstrated thdtabeGlacial Maximum information used
here, largely resemble information coming from ottienatic models (Delgado-Baquerizb
al. 2016a) and spatial and temporal resolutions (RElggaquerizaet al. 2017).

Climatic legacies

Climatic legacies were calculated as the differenbetween an estimate of six climatic
variables (amount and variability in precipitati@md seasonality) 20k ybp and another
estimate for these variables at the present dagdffamet al. 2017) as shown in Delgado-
Baquerizo et al. (2017). In particular, the climategacy for each climatic variable is
calculated as the mathematical difference in tHeegfor each climatic variable from Last
Glacial Maximum and current climates (e.g., Annyaécipitatiourent cimate- Annual
precipitationast clacial Maximupp for each site. This difference provides us witlmaasure of
climatic legacies; increases, declines or a lackhazinge in a particular climatic condition
with time- in each of the sites surveyed from tiféetent datasets. A recent cross-validation
of the climatic legacy indexes used here is giveAppendices 1-3 in Delgado-Baquerio
al. (2017) and Appendix S1 in Delgado-Baquerizo et(2016a). Note that the climatic

legacy index used here is based on the differebeéseen two single snapshots in time
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(Current vs. Last Glacial Maximum climates), thadcalation of climate legacy comes with
a number of inherent and important assumptionsdfi@n et al. 2017). For example,
although we assume that change in precipitation tantperature gradually occurred with
time during last 21k years, we would like to ackienge that most abrupt changes in climate
occurred prior to 10k YBP (see Fordhatal. 2017). Even so, our climatic legacy index still
allowed us to address our research question ofhehéte signature of climatic legacies on
the network of interactions of aboveground and wglound can still be detected today.
Further discussion on this point is available apé&mdices 1-3 in Delgado-Baquerigbal.
(2017).

Soil properties and current management

Soil properties including texture (% sand contepk), soil C and P were available from the
two datasets used here (Appendix S3). Current neanexgt including intensity of grazing by
cattle and the incidence of cropping (only applieatb the belowground dataset) was
included in our statistical models (see below)dooaint for impacts from recent management
in the network of interactions of aboveground aetblwground. We used cattle density as
our proxy of current management as grazing byecatbne of the major drivers of grazing-

induced degradation in Australia over the past\z&drs (see Appendix S3 for details).

Network analyses

Network analyses were conducted separately foatloeeground and belowground network
Australian datasets. In both cases, we identifealagical clusters of strongly associated taxa
using correlation networks (‘co-occurrence netwprkhd the following protocol. Our
aboveground network contained 1280 nodes (spediemstular plants, mammals, birds,
reptiles, amphibians, ants, beetles, centipedekrocaches, crickets, scorpions and spiders).
In the case of the belowground networks, our d&asecluded 95,208 Operational
Taxonomic Units (OTUs) of bacteria, fungi, protiatsd soil invertebrates. These OTUs (aka
phylotypes) were calculated at 97% sequence sityiland can be considered to be
analogous to “species”. However, because of thgelatumber of microbial ‘species’
compared with other groups (plants and animals) #wedneed to restrict analyses to a
manageable network of interactions, we focusechendbminant microbial OTUs (top 10%
species sorted by dominance, as described in $edieeal. 2016). Dominant species for
bacteria, fungi and other eukaryotes were obtainddpendently for these organisms from
their original OTU tables. These bacterial, fungadl other eukaryotic taxa were then merged
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into a single abundance table. This resulted ina@s#t with 9502 taxa including 4953
bacteria (~80% of all bacterial phylotypes), 238adi (~80% of all fungal phylotypes) and
2228 other eukaryotes phylotypes (~80% of all eydtgr phylotypes). We then calculated
all pairwise Spearman’s rank correlations) between all soil plant/animal and soil
microbe/animal taxa. We focused exclusively on fpgsicorrelations as they provide
information on microbial taxa that may respond f&nly to environmental conditions
(Barberanet al. 2012). We considered a co-occurrence to be rolbute Spearman’s
correlation coefficienp was > 0.50 and® < 0.01 (see Barberast al. 2012 for a similar
approach). The network was visualized with theradBve platform Gephi (Bastiagt al.
2009). Finally, we used default parameters fromititeractive platform Gephi to identify
ecological clusters (aka modules) of soil taxarsghp interacting with each othéBastianet

al. 2009). We then computed the relative abundan@ach ecological cluster by averaging
the standardized relative abundances (z-scoreheftdxa that belong to each ecological
cluster. By standardizing our data, we ruled oyt efifect of merging data from different soil
groups: plants/animals and soil microbes/animialsaddition, we also used an alternative
approach and calculated the relative abundanceadb@gical clusters after centered log-ratio
transformation. Information on functional traits fangal taxa within each ecological cluster
(which is unavailable for bacteria), was obtainednT the online application FUNGuild
described in Nguyed al. (2016).

Variation partitioning modelling

We used Variation Partitioning (Legendsteal. 2008) to quantify the relative importance of
four groups of predictors: 1) six climatic legac¢i€y six climatic variables from current
climate, 3) current management (cattle densityemgianal Australia and cattle density and
cropping in continental Australia) and 4) soil peaes (pH, % of sand, soil C and P) as
predictors of the relative abundance of ecologatasters in the (1) Aboveground network
and (2) Belowground network. This analysis allowsdo identify whether climatic legacies
can explain a unique portion of the variance tlsanhot explained by current climate or
management (Legendet al. 2008). Note that adjusted coefficients of deteation (F) in
multiple regression and canonical analysis canparasion, take negative values (Legendre
et al. 2008). Negative values in the variance explaimedfgroup of predictors on a group of
response variable are interpreted as zeros, amdspond to cases in which the explanatory
variables explain less variation than that explainsing random normal variables (Legendre
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et al. 2008). In all cases, Variation Partitioning anak/svere conducted with the R package
Vegan (Oksanest al. 2015).

Random Forest modelling

We conducted a classification Random Forest amalgBreiman 2001) as described in
Delgado-Baquerizet al. (2016b) to identify the major predictors of théateve abundance of
ecological clusters in the two networks. Our lipeedictors included six climatic legacies,
six climatic variables from current climate, soibperties (pH, % of sand, soil C and P) and
current management (cattle density and/or croppifiggse analyses were conducted using
the rfPermute package (Archet al. 2016) of the R statistical softwardtip://cran.r-
project.org). We also repeated these analyses using an diterf@andom Forest approach
using the gradientforest R package (Strobl etGD82Ellis et al. 2012).

Structural equation modeling

We used structural equation modeling (SEM) (Gra@@62 to evaluate effects of climatic
legacies (i.e., temperature and precipitation thffiees between estimated climate about 20k
ybp and current climatic estimates) on the relativendance of ecological clusters in the two
networks, after accounting for spatial autocorrefa{latitude and longitude), soil properties
(pH, % of sand, soil C and P), current managemeaittl¢ density and/or cropping) and
current climate. Oua priori model is shown in Fig. S3. The use of SEM is palérly useful

in large scale correlative studies, as it allows gartitioning of causal influences among
multiple variables, and separation of the direa emlirect effects of model predictors (Grace
2006). We then tested the goodness of fit of oudetsd The goodness of fit of SEM models
was checked following Schermelleh-Engetl al. (2003). There is no single universally
accepted test of overall goodness of fit for SEpleable in all situations regardless of
sample size or data distribution (Schermelleh-Ergal. 2003). We used thg test % the
model has a good fit when<0y?/DF<2 and 0.05 R < 1.00) and the root mean square error of
approximation (RMSEA; the model has a good fit WRMISEA 0 < RMSEA < 0.05 and 0.10
<P < 1.00) (Schermelleh-Enget al. 2003). Oura priori models attained an acceptable/good
fit by all criteria in all cases, and thus no plost alterations were made. With a good model
fit, we were free to interpret the path coefficenf the model and their associatedalues.
SEM models were conducted with the software AMOS(IBM SPSS Inc, Chicago, IL,
USA).

Results
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We first generated two separate ecological netwfmk4) aboveground and 2) belowground
using information from the two independent datasetsng the approach described in the
Methods section, we identified and calculated #lative abundance of six and seven major
ecological clusters of species co-occurrence favaground and belowground networks,
respectively (Fig. 1). All taxa included within émecological cluster for the two networks,
and additional functional information on these taa@ shown in Figs. S4 and S5 and Table
S1. These ecological clusters include multiple s®edinked by potential ecological
interactions such as predator/prey, host/parakdet/symbiont, as well as different tropic
levels, e.g., primary producers and primary conssr(ieable S1; Figs S4 and S5). We found
a highly significant correlation between the relatiabundance of the ecological clusters
calculated as explained above and the same clusikrglated after using the centered log-
ratio transformationp(> 0.90; P < 0.001; Table S2).

Our variation partitioning model suggested thatneliic legacies explained a unique
portion of the variation for particular ecologiadusters that could not be accounted for by
measures of current management, soil propertiesuatent climates (Fig. 1). Climatic
legacies explained a unique and significant portbthe variation of ecological clusters in
five out of six ecological clusters for our abovagnd network (AG#) and for seven out of
seven ecological clusters for our belowground netwBG#) (Fig. 1; Table S3). This was
especially noticeable for AG#1 (6 out of 58% ofigtion explained) and for BG#1 (7.5 out
of 68% of variation explained) and BG#3 (15.5 o@it4@% of variation explained). As
expected, current climate and soil properties,inelit proposed as the dominant drivers of
ecosystem community assembly at large spatial scaleo explained a unique portion of the
variation in all ecological clusters (Fig. 1; Tal#8). Management was also important for
some clusters (BG#0, 1, 5 and 6), but not for atifeig. 1; Table S3).

Our Random Forest analyses suggested that climegicies were as important as, or
more important than, current climate in predictithg relative abundance of ecological
clusters within our two networks, and after accouqnhfor soil properties and management
(Figs. S6-S9). Temperature legacies, maximum teatper (MAXT) and temperature
seasonality (TSEA), were more consistent than pitation legacies in predicting the
relative abundance of ecological clusters withie éfboveground and belowground networks
(Figs. S6-S9). However, mean precipitation (MAPH grecipitation seasonality (PSEA)
were also reported to be a key climatic legacy ipted) the relative abundance of ecological
assemblies in both ecological networks (Figs. Sp-F8ese results suggest that climatic

legacies have left a detectable signature on theenmporary ecosystem community assembly
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of unique clusters of plant, animal and microbipéses strongly co-occurring with each
other (Table S1; Figs S4 and S5). Importantly, antl a statistically significant correlation
between the Random Forest importances across fmedicalculated from each ecological
cluster using the rfPermute and gradientforest ékpges (Table S4).

We used SEM, to further clarify the role of clintakégacies in predicting the relative
abundance of contemporary ecosystem community ddesmindependently, for our two
datasets. Although this is quite a conservativeguare, we still found multiple direct effects
of climatic legacies, from all climatic variablesudied, on the relative abundance of
particular ecological clusters in both networksg(R2). Remarkably, increases in maximum
temperature legacies had a direct positive effecth® relative abundance of AG#1 and
BG#1. In other words, locations with a positive @by for maximum temperature over the
past ~20k years might have promoted the relativen@dnce of species within AG#1 and
BG#1 (Fig. 3). Other highly significant climaticgacy effects also included a direct negative
effect of temperature seasonality on the relativeandance of AG#2, and direct positive
effects of diurnal temperature range (MDR) and TS&#A BG#2 and 0. Note that for
simplicity, Figure 2 only included direct effectstiva P < 0.01 (see Table S5 for direct
effects with a < 0.0P < 0.05). Remarkably, increases in a given ecoldgituster were
often followed by declines in the relative abundantother ecological clusters, as supported
by the multiple indirect effects among the relatalsundance of ecological clusters in our
aboveground and microbe-animal networks (e.g., A&G#B vs. AG/BG#3)(Fig. 2 and 3).
Moreover, we also detected multiple indirect efeof climatic legacies on the relative
abundance of ecological clustera changes in soil properties for the two studied).(B).
Discussion
Our findings provide novel evidence that past ctesalikely played an important role in
regulating the relative abundance of the major ystesn community assemblages that we
observe today, helping to explain a unique poridrthe variation in the distribution of
particular communities that has generally beenbatid to stochasticity (e.g. Powetl al.
2015). More specifically, climatic legacies migkgulate the relative abundance of multiple
ecological clusters formed by species strongly codaing within two independent above-
and below-ground networks (shown in Table S1). €hmsoccurring taxa included multiple
potential ecological interactions such as predatey/, host/parasite, host/symbiont, as well
as different tropic levels, e.g. primary producarsl primary consumers (Table 1; Figs S3
and S4). For example, AG#1 contains multiple paamprredator/prey interactions including

(1) those of the birds speci&@ruthidea cinerea and Turnix velox, with multiple potential

11
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plant and arthropod preys (Table 1; Table S1), {f&®)se from the barking spider
(Selenocosmia stirlingi) and the scorpionLfchas jonesae) with the abundance of potential
ant, beetle and cricket prey or (3) those froml#dte monitor Yaranus varius) and the skink
(Ctenotus leonhardii), both of which are related to the abundance okide range of
arthropod species that they prey on. Similarly, BGgbntains potential predator/prey
relationships such as the reported high correlabetween the protozoa@ercozoa and
Ciliophora and their common prey soil bacteria. This ecoldgidaster also contains
multiple fungal plant pathogens such Bsncatella, Coniothyrium and Phoma sp., with
implications for plant communities co-existing wiblir belowground network. The relative
abundance of all species and potential interactiattin AG#1 and BG#1 might have been
promoted by positive anomalies in maximum tempeeafirigs. 2 and 3). Supporting this
result, BG#1 contains multiple phylotypes of baet¢hat have previously been reported to
respond positively to increases in temperatureuding those from the gene€andidatus,
Koribacter, Bacillus, Burkholderia and Rhodoplanes (Oliverio et al. 2016). In other words,
locations with the highest positive anomalies irkimnaum temperature might now support a
greater abundance of species within BG#1 than imtatwith negative anomalies or no
changes in maximum temperature over the past 28isye

Interestingly, increases in a given ecological teusvere often followed by declines
in the relative abundance of other ecological eltsstas supported by the multiple indirect
effects among the relative abundance of ecologicsters in our aboveground and microbe-
animal networks. Such results suggest that incsegsthe relative abundance of particular
ecological clusters resulting from temperature d¢ggm might have had multiple cascading
effects on other ecological clusters. Thus, theatieg relationship between BG/AG#1 with
BG/AG#2, might also lead to cascading effects om tblative abundance of BG/AG#3
clusters, which were negatively related to BG/AGlt&sters in both networks (Figs. 2 and 3).
Thus, climatic legacies might also have multipldiiect negative or positive effects on the
relative abundance of the ecological clusters withur two networks, as supported by our
structural equation models (Fig. 2). Cluster BG#2hie microbe-animal network, contained
multiple probable mycorrhizal species such Eagoloma, Glomus and Claroideoglomus,
which might have positive effects on plant spedieked to this soil microbial-network;
some identified using molecular techniques (Taldlg $his ecological cluster also includes
potential predator/prey relationships between aaioeba, and ciliates, with bacteria and
plant pathogens (e.gibberella intricans). Moreover, for the aboveground network, AG#2

was characterized by the potential producer/consulim& between emus Dfomaius
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novaehollandiae) and the fruits of.ycium ferocissimum, Eremophila debilis andEinadia spp.
(Noble 1991). Our findings suggest that the retatabundance and potential interactions
among species within all of these ecological chssere highly sensitive to anomalies in
maximum temperatures and their cascading effeags 8. Changes in ecological clusters #2
in both networks, linked to climatic anomalies, htign turn have multiple cascading effects
on the relative abundance of ecological clustersn#3oth networks. BG#2 is characterized
by potential parasite/host interactions betw&eegarina sp. and soil arthropods (Omoto and
Cartwright 2003), predator/prey interactions betwedylotypes from phyluntCercozoa
(protist) and bacteria (Table S1) and plant-fungiractions of symbiosis (e.4uritella sp.)
and pathogenesis (e.d@evriesia sp.). Similarly, AG#3 is characterized by potentia
predator/prey interactions among plants, inseizards and amphibians.

Although the effects of current or climatic legacien the community assembly of
terrestrial ecosystems are not directly comparttbtbose from on-going changes in climate,
our network approach still has the potential tovmte insights into the role of climate change
in predicting possible winner and loser communggemnblies in response to climate change.
Specifically, our study provides a compendium céaes from particular ecological clusters
that are expected to be highly sensitive to changeslimatic conditions. For example,
current maximum temperature, one of the major ditnkegacies, is also positively and
strongly influencing the abundance of BG#1 (Figagil AG#1 (SEM direct effect = 1.4B;
= 0.044; Table S3). This suggests that furthereases in temperature predicted by the end of
this century might continue to promote the relatal®indance of species and interactions
within this ecological cluster, largely to the detent of those in BG#2 and AG# 2, with
potential cascading effects on other ecologicaktels. In fact, our findings suggest that
positive anomalies of maximum temperature of ug°@ —comparable to those predicted for
climate change already had a massive effect onrdéftetive abundance of particular
ecological clusters (Fig. 3). Predicted impactstwnges in precipitation with climate change
(Huanget al. 2016) could also be inferred from our network aagh. For instance, for our
aboveground network, current precipitation seastynalhose legacy was positively related
to the abundance of AG#4, indirectly via changesaih pH, is still having an effect on the
abundance of this ecological cluster, characterfpedhe potential interactions between the
sand monitor Yaranus gouldii) and its prey items lycosid spiderky¢osid spp.) and
scorpions l(ychas spp.). Other examples, of key climatic legaciesd #iill drive the relative
abundance of particular ecological clusters camteered from Fig. 2 and Tables S1 and S3.

These climatic changes could also alter the prapodf native species or the proportion of
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taxa coming from different species. For example #BGn our microbe-animal network
comprised mainly of phylotypes of strongly occugribacteria and fungi, but BG# 2 also
contained multiple soil animal taxa.

Finally, as expected (e.g. Gossreal. 2016), current management also influenced
the relative abundance of ecosystem community dsisesn For example, for our
belowground network, we found strong direct effemtropping and cattle density on the
relative abundance of the multiple ecological @ustwithin this network (Fig. 2). Of special
interest is the negative effect of cropping onriative abundance of BG#1 in our microbe-
animal network, which might potentially reversetparthe climatic legacies from maximum
temperature (explained above) on this ecologicaistel. Interestingly, BG#2 in the
microbial-animal network, which was indirectly négely affected by the maximum
temperature legacy, seems to benefit from croppind cattle density impacts (Fig. 2),
though indirectly, potentially helping to reverskmatic legacies on BG#1. All of these
results accord with previous studies suggesting tlbanan activities can erase part of the
climatic legacies of temperature and precipitabarthe current distribution of soil organisms
(Delgado-Baquerizcet al. 2017). However, in general, management measuredatike
density did not influence the relative abundancalmiveground clusters as supported by our
Variation Partitioning, Random Forest and Strudtiguation Modeling analyses. The only
ecological cluster affected by cattle density iis thetwork was AG#5, shown in our Random
Forest results (Fig. S6).

Together, our work suggests that climatic legabiege left a statistically significant
signature on the contemporary below- and abovergt@ommunity assemblies and can now
explain a unique portion of the distribution in fo@xlar ecological clusters from terrestrial
ecosystems. This is true even after accountingké&yr predictors such as location, soll
properties, current climate or management, all bictv are routinely proposed as drivers of
ecosystem community assemblies at large spatidéssc@hese findings also advance our
understanding of the links between particular ctimbegacies and the relative abundance of
species and potential interaction within ecologdakters across a broad range of ecosystem
types at the continental scale. Moreover, we fotlvadl climatic anomalies might have led to
multiple cascading effect on the relative abundaotescological clusters in terrestrial
ecosystems. We also found that current managem#éuémces can potentially reverse part
of the impacts of climatic legacies, which occurdeding the last 20k years, on particular

ecological clusters. Such knowledge can potentiadljp us to better understand changes in
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particular ecosystem community assemblies in respda on-going global environmental
change including land use intensification and ctarghange, with important implications for

future sustainable management and conservatiooigsli
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(a) Aboveground network (b) Belowground network
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[ Soil properties
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Figure 1. Relative contribution of the different predictoused to model the relative
abundance of ecological clusters within our abowegd and belowground networks. Upper
right panels represent network diagrams with noclsured by each ecological cluster
within our aboveground and microbe-animal netwofksharacterization of the taxa within
each ecological cluster is available in Table Battom left panels represent results from
Variation Partitioning modelling aiming to identitthe percentage variance of relative
abundance of ecological clusters explained by dlon#&gacies, current climate and
management. Associated P-values to the relativeribation of the different predictors are

available in Table S3. AG = Aboveground network. BBelowground network.
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623 Figure 2. Mechanistic modeling identifying the direct andinedt effects of climatic legacies
624 on the relative abundance of ecological clustethiiour aboveground and belowground
625 networks. For simplicity, only effects with a P <00 are reported here. The rest of
626 significant effects are available in Table S5 (0<OR < 0.05). Numbers adjacent to arrows
627 indicate the effect-size.’Rdenotes the proportion of variance explained. $ize of the
628 arrow is proportional to the effect size (but ie tase of spatial influence). Climatic legacies,
629 current climate and management predictors are decduin our models as independent
630 observable variables, however we grouped themarnséime box in the model for graphical
631 simplicity. AG = Aboveground network. BG = Belowgmd network.
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Figure 3. Selected relationships from our SEMs. Panels include relationship between

maximum temperature legacy and ecological clustrswithin our aboveground and

belowground networks. Also, selected relationsbigsveen ecological clusters #1 and 2, and

ecological clusters #2 and 3 in both independetwaris. AG = Aboveground network. BG

= Belowground network. See Fig. S10 for an alteweatversion of this figure using

ecological clusters calculated after centred ldgpréransformation and showing similar

results.
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Appendix S1. Information on the plant and animal sampling to obtain the data used to

build our plant-animal network (regional scale).

Each site comprised a 200 m long transect runnerggndicular to the nearest livestock
watering point, which was generally an earthen dalong this transect we positioned five
25 n? (5 m x 5 m) plots every 50 m, within which we aaliy located a smaller (0.5 m x 0.5
m) quadrat (‘small quadrat’). We first assessed rHlative abundance (i.e., number of
individuals) and diversity (i.e., species richnessyroundstorey (grasses and forbs) in the 5
m by 5 m quadrats, and the cover of woody plainée$, shrubs, subshrubs) at 100 points,
located every 2 m along the 200 m transect usingpiat-intercept method. We then
conducted multiple animal surveys. Bird surveysjrial reptile searches and incidental
records of vertebrates were conducted in an ar@aril® 200 m along transects. Bird surveys
were conducted during spring to early summer (Sepée to November) over two
consecutive years. In each year, all sites werg@kahtwice for 20 minutes, on different days
at different times, by a single observer. Surveymmenced from dawn and concluded by 12
noon, or earlier if ambient temperatures reachédC30r if it became excessively windy (>
39 km/hr). Along the 200m transect, we positioneg fgrids of wet-pitfall traps at 50 m
intervals for invertebrate sampling, and four ttayes for vertebrate sampling at the 50 m,
100 m, 150 m, and 200 m transect locations. Smalhmals and reptiles were surveyed
using dry pitfall traps, funnel traps, Elliott taand timed searches. Vertebrate trap lines
consisted of two 20 L buckets (150 mm deep), twd dbn diameter PVC pipes (500-600
mm deep), and four double-ended funnel traps plaoel@r or along a 20 m drift-fence. Dry
pitfall traps were placed flush with the ground endhe drift fence. Captured specimens
were provided with shade cloth sheets, PVC tubgspf®am blocks, litter and some soil in
each trap to prevent over-heating or drowning edtent of rain. Ant rid powder and sprays
were used at sites where ants were abundant. Firape were located at either side of the
drift fence, between the end pairs of pitfall traps90% shade-cloth cover was placed over
the top of the funnel traps to buffer temperatunsgde the traps. Captured specimens were
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provided with a cardboard roll and/or a sheet okiag for shelter. In addition, four Elliot
traps were also positioned near each trap linepprapriate habitat patches such as under
shrubs, or near logs or rocks to enhance capttes.r@ach trap was baited with a mixture of
rolled oats and peanut butter. Traps were coverégdd shade cloth cover to buffer
temperature extremes for captured specimens. Wall piaps were 250 ml plastic screw-top
containers half filled with ethylene glycol, indeal at each corner of a 5 m x 5 m plot, plus
one trap located centrally within the plot. Eactiglli trap was placed flush with the ground
with a cover to prevent damage or loss of matehied to rainfall. Traps were left open for
five consecutive nights at each site. All vertebratp-lines were checked and cleared early
each morning and late each afternoon over a 4 @ap@ (eight times) and each species
identified. Finally, two 30-minute habitat searcivesre undertaken at each 100 m x 200m
site on different afternoons. Searches were tadg&iwards potential reptile habitat (e.qg.
open patches, leaf litter, logs, rocks, bark) byesenced personnel. Ground-dwelling
invertebrates were sampled using both wet and iigllgraps with incidental specimens of
large invertebrates (i.e. scorpions, spiders, pedgs, beetles, etc. > 1 cm, but excluding
ants) collected from the vertebrate fauna pitfieps each morning. All fauna surveys were
conducted with approval from the New South Walesmfah Ethics Committee (Approval
number: 140602/02).

Appendix S2. Molecular analyses conducted to characterize the soil microbial and
animal community used to build our soil microbe-animal network (continental scale).

All soil DNA was extracted in triplicate, according the methods employed by the Earth
Microbiome Project (Bissett et al. 2016). Amplicdaasgeting the bacterial 16S rRNA, fungal
Internal transcribed spacer (ITS) and Eukaryoti§ tBNA genes were sequenced using the
lllumina Miseq platform and the 27F — 519R, ITSTFS4 and Euk_1391f-EukBr primer set,
respectively (Bissett et al. 2016). Bioinformaticalyses were performed using MOTHUR
(v1.34.1) as explained in Bissett et al. (2016)ef@ponal Taxonomic Units (OTU) were
picked at 97% sequence similarity. The OTU abunedables were rarefied at 14237, 2901
and 4866 sequences/sample for bacteria, fungi akalgotes to ensure even sampling depth.
In the case, of eukaryotes, we removed all fungdU©from the eukaryotic dataset as we are
already using a higher resolution maker (ITS) tarabterize the fungal community in our

samples.

Appendix S3. Soil properties and current management
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Soil properties were used using standardized latbpols. Soil properties were measured as
described in Eldridge et al. (2016) and Bissetile{2016). For the plant-animal dataset, we
did not have soil pH. Soil pH information was obtd from Hengl et al. (2017) for the
locations in this study. These authors producedm&&solution global maps that included
information on multiple soil properties. Predicieébrmation on soil pH was cross-validated
using the continental Australia dataset descridem/@. In this dataset, pH measured in the
field was significantly and positively related (Sp@manp = 0.65;P < 0.01) to pH obtained
for each plot using map predictions from Henglle(2017).

For current management in the regional Australiatasket of plant-animal networks,
information on the intensity of grazing by cattlassmeasured in the field. In brief, within the
large quadrats used for the vegetation survey, aumted dung events, i.e. we considered a
number of small fragments to have originated frame dung event, if the fragments were
within an area of a few metres. We used algoriththeseloped previously for the study area
(Eldridge et al. 2016), to calculate the total odeied mass of dung per hectare based on the
number of pellets recorded in the field. This tataén dried mass of dung was used as our
measure of recent grazing intensity by cattle. Dand pellet counts have been used widely
to estimate the abundance of large herbivores &whiand Jarman 1987; Marques et al.
2001).

For the continental Australian dataset (BASE mjesed to estimate soil microbe-
animal networks, we obtained information on the sitgnof cattle from Robinson et al.
(2014). These authors produced 1 km resolutionajlabaps that included information on
livestock densities. Predicted information on eatensity from these models was cross-
validated using the regional NSW dataset descrédgalve. In this dataset, cattle density
measured in the field using the dung approach vigwsifisantly and positively related
(Spearmanp = 0.20; P < 0.01) to density of cattle obtained for eacht plging map

predictions from Robinson et al. (2014).
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Table S1. List of taxa included in each of the ecologicalstirs within our aboveground and

belowground networks and associated functionaldutrgits.

Table Sl is available online as a Separate . XLS file under the Supporting Materials for this

article.

Table S2. Correlation (Spearman) between relative abundaheeological clusters used in
this manuscript with the same clusters calculatdter ausing centered log-ratio

transformation.

Parameter #0 #1 #2 #3 #4 #5 #6
Aboveground P 0.95 0.96 0.90 0.99 0.97 0.96
P-value  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Belowground P 0.98 0.98 0.99 0.99 0.99 0.97 0.98

P-value  <0.001 <0.001 <0.001 <0.001 <0.001 <0.00D.061
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Table S3. P-values associated to thelative contribution of the different predictorsed to
model the relative abundance of ecological clusigfsin our aboveground and belowground
networks. AG = Aboveground network. BG = Belowgrduretwork.
Ecological Climatic Current M anagement Soil
cluster legacies climate properties
Aboveground AGH0 0.001 0.001 0.231 0.001
networ k
AG#1 0.001 0.001 0.879 0.001
AG#2 0.002 0.001 0.448 0.001
AG#3 0.289 0.104 0.841 0.026
AG#4 0.001 0.001 0.819 0.001
AGH#5 0.001 0.001 0.085 0.001
Belowground BG#0 0.001 0.001 0.459 0.001
networ k
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814

815

816

817

818

819

820

821

822
823

824

825

826

BG#0 0.001 0.001 0.005 0.001
BG#1 0.001 0.001 0.001 0.001
BG#2 0.001 0.001 0.192 0.001
BG#3 0.001 0.001 0.121 0.001
BG#4 0.001 0.001 0.105 0.005
BG#5 0.001 0.001 0.001 0.001
BG#6 0.001 0.001 0.001 0.001

Table $4. Correlation (Spearman) between Random Forest impoetacross predictors

calculated for each ecological cluster using tRenmute and gradientforest R packages.

Paramete

r

Aboveground p
P-value

Belowground p
P-value

#0
0.87 0.89
<0.00 <0.00
1 1
0.90 0.93
<0.00 <0.00
1 1

28

0.91 0.85 0.94 0.92
<0.00 <0.00 <0.00 <0.00
1 1 1 1
0.85 0.91 0.91 0.95
<0.00 <0.00 <0.00 <0.00
1 1 1 1

0.91

<0.00
1
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Table S5. Standardized direct effects (0.0P< 0.05) from the SEM in Fig. 2.

Networ k

Responsevariables
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Predictors

Standardized
effect

P-value
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network
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network
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MINT legacy
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Latitude
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MAP
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Figure S1. Location of the sites included in the studies af\aground network (n = 108) in
yellow and the belowground network (n = 439) in.red
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875 Figure S2. MAP and MAXT legacy distribution across the 547dbons included in this
876  study.
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Figure S3. A priori structural equation model including direct andiiect effects of

geographical location, climatic legacies, curreliinate and management on the relative
abundance of ecological clusters (EC #) within @ooveground and belowground networks.
Predictors within climatic legacy, current climatgpatial (latitude and longitude) and

management are allowed to co-vary in these analyses
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AG#H0 AG#1 AG#H2 AG#3 AG#4 AG#5

Amphibians

Ants

Beetles

Bird

Cockroaches

Crickets

Mammals

Plants

Reptiles

Scorpions

Spiders
N2 phylotypes/cluster 159 195 201 75 138 198

% phylotypes per cluster

901 60 90100

902 Figure $4. Taxonomic composition (% of taxa within each egatal cluster) for six well-
903 defined clusters of strongly co-occurring soil tawathin our aboveground. AG =
904 Aboveground network.
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BG#0 BG#1 BG#2 BG#3 BG#4 BG#5 BG#6

Acidobacteria
Actinobacteria
Armatimonadetes
Bacteroidetes
Chloroflexi
Cyanobacteria
Firmicutes
Gemmatimonadetes
Nitrospirae
Planctomycetes
Proteobacteria
Verrucomicrobia
Other bacteria
Amoebozoa
Angiosperms
Arthropoda
Cercozoa
Chlorophyta
Ciliophora
Excavata
Gregarinasina
Nematoda
Platyhelminthes
Rotifera
Stramenopiles
Tardigrada
Other eukarya (but fungi) |
Ascomycota
Basidiomycota
Glomeromycota
Zygomycota
Other fungi

Ne phylotypes/cluster 457 630 1181 86 297 1835 496

% phylotypes per cluster
0 100 200 300

Figure Sb. Taxonomic composition (% of taxa within each egatal cluster) for seven well-
defined clusters of strongly co-occurring soil tawathin our belowground. BG =
Belowground network.
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915 Figure S6. Random Forest analysis (rfPermute R package) ainonglentify the best
916 individual predictors of the relative abundancesoblogical clusters within our aboveground
917 network. Predictors include those within climaggécies, current climate and management
918 categories. MSE = Mean Square Error. AG = Abovegdotetwork.
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Figure S7. Random Forest analysis (rfPermute R package) ginonidentify the best
individual predictors of the relative abundanceeoblogical clusters within our beloground
network. Predictors include those within climatgécies, current climate and management
categories. MSE = Mean Square Error. BG = Belowgdauetwork.
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Figure S8. Random Forest analysis (gradientforest R packageh@ to identify the best

individual predictors of the relative abundancesoblogical clusters within our aboveground

network. Predictors include those within climaggéacies, current climate and management

categories. AG = Aboveground network.
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Figure S9. Random Forest analysis (gradientforest R packageing to identify the best
individual predictors of the relative abundanceeoblogical clusters within our beloground
network. Predictors include those within climatgécies, current climate and management

categories. BG = Belowground network.
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Figure S10. Selected relationships from our SEMRanels include relationship between
maximum temperature legacy and ecological clustrswithin our aboveground and
belowground networks. Also, selected relationsbigsveen ecological clusters #1 and 2, and
ecological clusters #2 and 3 in both independemvaris. Data was centered log-ratio
transformed before ecological clustered were catedl AG = Aboveground network. BG =

Belowground network. CLR = Centered log-transfoiiorat
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