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Abstract  36 

The role of climatic legacies in regulating community assembly of above- and below-ground 37 

species in terrestrial ecosystems remains largely unexplored and poorly understood. Here, we 38 

report on two separate regional and continental empirical studies, including >500 locations, 39 

aiming to identify the relative importance of climatic legacies (climatic anomaly over the last 40 

20k years) compared to current climates in predicting the relative abundance of ecological 41 

clusters formed by species strongly co-occurring within two independent above- and below-42 

ground networks. Climatic legacies explained a significant portion of the variation in the 43 

current community assembly of terrestrial ecosystems (up to 15.4%) that could not be 44 

accounted for by current climate, soil properties and management. Changes in the relative 45 

abundance of ecological clusters linked to climatic legacies (e.g., past temperature) showed 46 

the potential to indirectly alter other clusters, suggesting cascading effects. Our work 47 

illustrates the role of climatic legacies in regulating ecosystem community assembly and 48 

provides further insights into possible winner and loser community assemblies under global 49 

change scenarios. 50 

 51 
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Introduction  69 

Current climate is known to be one of the major environmental filters shaping above and 70 

belowground community assemblies (Schleuning et al. 2016), as particular groups of species 71 

only occur under specific ranges of precipitation and/or temperature. Nevertheless, climatic 72 

conditions are dynamic, and have been shown to shift profoundly over millennia. 73 

Consequently, paleoclimatic filtering might have left a strong signature on the current above- 74 

(plants and animals) and below-ground (bacteria, fungi, protists and soil invertebrates) 75 

community assemblies found within ecological networks across entire terrestrial ecosystems. 76 

Although such an argument is intuitive conceptually, the relative importance of paloclimatic 77 

legacies (i.e., temperature and precipitation differences from the present to ~20k years ago; 78 

Fordham et al. 2017) compared with current climate filtering in predicting the assembly of 79 

entire ecological network of above- and below-ground communities has never been explicitly 80 

tested. Furthermore, no large scale studies have addressed this important research question. 81 

Here, we tested the hypothesis that historical climatic legacies (hereafter ‘climatic legacies’) 82 

explain important parts of the variation in ecosystem aboveground and belowground 83 

community patterns found within ecological networks that cannot be accounted for by current 84 

climates. 85 

Studies over the past two decades provide strong evidence that climatic changes, since 86 

the last glaciation about 10k years ago (Fordham et al. 2017), are partly responsible for the 87 

current distribution of plants, animals and microbial communities in terrestrial ecosystems 88 

globally (Atkinson et al. 1987; Svenning J-C. et al. 2015; Lyons et al. 2016; Delgado-89 

Baquerizo et al. 2017; Partel et al. 2017). Recent studies have also provided solid evidence 90 

that a knowledge of climatic legacies, can improve our predictions of the current distribution 91 

of specific groups of organisms including plants and microbes (Schleuning et al. 2016; 92 

Delgado-Baquerizo et al. 2017; Partel et al. 2017). Much less is known on the role of climatic 93 

legacies in driving ecological networks of above- and below-ground organisms. Plant and soil 94 

microbial communities comprise two components of the most important terrestrial food 95 

webs: aboveground and belowground. The first is essential for the provision of food and fibre 96 

and the second supports key soil processes such as litter decomposition and nutrient cycling, 97 

which in turn, supports plant productivity (Wardle et al. 2004; Hooper et al. 2000; de Vries et 98 

al. 2012). Because of their enormous functional importance, identifying new predictors that 99 

help explain the distribution of entire biotic community assemblies is one of the major 100 

endeavours in which scientists are immersed today. Moreover, future projections are 101 

conditional upon the past. Thus, a demonstrable link between climatic legacies and current 102 



4 
 

ecosystem community assemblies found within ecological networks would improve our 103 

capacity to predict how entire ecosystem community assemblies might respond to forecasted 104 

climate change, and the extent to which climatic changed might affect the myriad ecosystem 105 

services these communities provide. 106 

Given the strong links between climatic legacies and the current distribution of 107 

particular groups of soil microbes and plants (Schleuning et al. 2016; Delgado-Baquerizo et 108 

al. 2017; Partel et al. 2017), we hypothesized that past climates might have triggered the 109 

current above- and belowground community assemblies in terrestrial ecosystems, i.e., the 110 

identity and abundance of coexisting multitrophic species within ecological networks that 111 

occur today. For example, locations with a positive anomaly in temperature or precipitation 112 

over the last 20k years might have resulted in a completely different biotic community 113 

assembly compared with locations with a negative anomaly or no change in temperature or 114 

precipitation, even if all these locations share the same current climate. If climatic legacies 115 

play a role in regulating the current network of ecological interactions, then climatic legacies 116 

might help to explain particular community assemblies that cannot be explained using only 117 

current climate data. This unexplained variation has hitherto generally been ascribed to 118 

stochasticity (e.g., Powell et al. 2015). Thus, climatic legacies might help us to explain why 119 

two locations with a similar current climate do not always lead to exactly the same 120 

community assembly.  121 

We argue that Australia is one of the best locations on Earth to identify the role of 122 

climatic legacies in driving current ecosystem community assembly for three reasons. First, 123 

Australia has a long history of aboriginal occupation (> 60k years), characterised by a semi-124 

sedentary, hunter-gatherer lifestyle (Hubble et al. 1983). Compared with other continents, 125 

Australia has a relatively recent history of European occupation (~ 200 years) and therefore a 126 

short history of intensive agriculture. Because of a short European history, more than 90% of 127 

Australia’s land mass is still occupied by native vegetation and less than 6% is arable. 128 

Therefore, compared with other continents, the network of ecological interactions in 129 

Australian ecosystems is more likely to resemble those that existed prior to large-scale 130 

agricultural management. Second, contemporary agricultural land use in Australia is 131 

predominantly livestock grazing and cropping, and statistical models are able to account for 132 

the impacts of both land uses on our conclusions. Finally, given its continental scale, 133 

Australia experienced a wide range of climatic legacies over the past 20k years, including 134 

both positive and negative anomalies in temperature and precipitation variables (see 135 
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examples in Fig. S1). Consequently, Australia provides enough statistical variability to enable 136 

us to answer our primary research questions.  137 

Herein, we used a combination of ecological network analyses and statistical 138 

modelling to evaluate the relative importance of climatic legacies compared to current 139 

climates in predicting the relative abundance of particular ecological clusters of strongly co-140 

occurring species. Intuitively, we would expect these clusters to include species across 141 

multiple trophic levels and to be good surrogates of exclusive ecosystem community 142 

assemblies. We also aimed to identify the most important climatic legacies explaining the 143 

relative abundance of these ecological clusters and describe examples of specific species-144 

species interactions within these clusters across different trophic groups (predator/prey) and 145 

associations (host/symbiont). To address our research questions, we used two independent 146 

datasets from Australia, which included >500 locations at both regional and continental 147 

scales. The first dataset, which included information, from 108 “natural” locations in eastern 148 

Australia on the composition of plant and animal species, was used to build an aboveground 149 

(plants and animals) correlation network. The second dataset, including 375 “natural” and 60 150 

cultivated locations across mainland Australia, contained information on the composition of 151 

soil bacteria and eukaryotes (fungi, protists and soil invertebrates). This dataset was used to 152 

build a belowground correlation network.  153 

Materials and Methods 154 

Aboveground network 155 

Our aboveground network study was conducted at 108 sites across a large area (> 500 km2) 156 

of eastern Australia (Fig. S1). This survey was undertaken in three semi-natural woodland 157 

communities dominated by blackbox (Eucalyptus largiflorens), white cypress pine (Callitris 158 

glaucophylla) and river red gum (Eucalyptus camaldulensis). These three communities 159 

include sites used extensively for livestock grazing, large areas dedicated to conservation 160 

(national parks, nature reserves) and smaller areas devoted to native forestry, but excluded 161 

any areas that were cultivated or supported crops. In these locations, we undertook multiple 162 

vegetation and animal surveys targeting grasses, forbs, woody plants, birds, mammals, 163 

reptiles, amphibians and invertebrates (see Appendix S1 for sampling details).  164 

Belowground network 165 

We used a subset of sample locations from the Biome of Australia Soil Environments 166 

(BASE) project (Fig. S1) for our belowground network (soil bacteria, fungi, protists and soil 167 

invertebrates). This subset includes data on the composition of bacterial, fungal and 168 

eukaryotic communities across 439 locations belonging to “natural” (379) and agricultural 169 
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(60) (wheat and cotton crops) ecosystems from Australia. Samples were collected between 170 

2011 and 2014. In each location, a 25 x 25m plot was established. Soil samples (top 10cm) 171 

were collected according to the methods described in Bissett et al. (2016). The community 172 

composition of soil bacteria, fungi, protists and soil invertebrates was determined using 173 

amplicon sequencing with the Illumina Miseq platform (see Appendix S2 for details).  174 

Climate data 175 

For all sites surveyed, we obtained six climatic variables for current climate and climate in 176 

the Last Glacial Maximum from the Worldclim database (www.worldclim.org) (Hijmans et 177 

al. 2005). These variables include mean precipitation (MAP), maximum and minimum 178 

temperature (MAXT and MINT), mean annual precipitation and temperature seasonality 179 

(PSEA and TSEA) and mean diurnal temperature range (MDR). We selected these six 180 

variables as they provide a good approximation of the quantity and variability of precipitation 181 

and temperature. In addition, these six variables did not suffer from strong multi-collinearity 182 

(Pearson’s r < 0.8; Katz 2006). In the case of Last Glacial Maximum climate, we used 183 

estimates provided by the Community Climate System Model (CCSM4; www.worldclim.org) 184 

(Bystriakova et al. 2013; Tallavaara et al. 2015). We used data at a 2.5 minutes resolution 185 

(~4.5km at Equator), as this is the highest resolution available for the Last Glacial Maximum 186 

period. Previous studies have demonstrated that the Last Glacial Maximum information used 187 

here, largely resemble information coming from other climatic models (Delgado-Baquerizo et 188 

al. 2016a) and spatial and temporal resolutions (Delgado-Baquerizo et al. 2017).  189 

Climatic legacies 190 

Climatic legacies were calculated as the differences between an estimate of six climatic 191 

variables (amount and variability in precipitation and seasonality) 20k ybp and another 192 

estimate for these variables at the present day (Fordham et al. 2017) as shown in Delgado-193 

Baquerizo et al. (2017). In particular, the climatic legacy for each climatic variable is 194 

calculated as the mathematical difference in the values for each climatic variable from Last 195 

Glacial Maximum and current climates (e.g., Annual precipitationCurrent climate - Annual 196 

precipitationLast Glacial Maximum) for each site. This difference provides us with a measure of 197 

climatic legacies; increases, declines or a lack of change in a particular climatic condition 198 

with time- in each of the sites surveyed from the different datasets. A recent cross-validation 199 

of the climatic legacy indexes used here is given in Appendices 1-3 in Delgado-Baquerizo et 200 

al. (2017) and Appendix S1 in Delgado-Baquerizo et al. (2016a). Note that the climatic 201 

legacy index used here is based on the differences between two single snapshots in time 202 
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(Current vs. Last Glacial Maximum climates), thus calculation of climate legacy comes with 203 

a number of inherent and important assumptions (Fordham et al. 2017). For example, 204 

although we assume that change in precipitation and temperature gradually occurred with 205 

time during last 21k years, we would like to acknowledge that most abrupt changes in climate 206 

occurred prior to 10k YBP (see Fordham et al. 2017). Even so, our climatic legacy index still 207 

allowed us to address our research question of whether the signature of climatic legacies on 208 

the network of interactions of aboveground and belowground can still be detected today. 209 

Further discussion on this point is available at Appendices 1-3 in Delgado-Baquerizo et al. 210 

(2017).  211 

Soil properties and current management  212 

Soil properties including texture (% sand content), pH, soil C and P were available from the 213 

two datasets used here (Appendix S3). Current management including intensity of grazing by 214 

cattle and the incidence of cropping (only applicable to the belowground dataset) was 215 

included in our statistical models (see below) to account for impacts from recent management 216 

in the network of interactions of aboveground and belowground. We used cattle density as 217 

our proxy of current management as grazing by cattle is one of the major drivers of grazing-218 

induced degradation in Australia over the past 200 years (see Appendix S3 for details).  219 

Network analyses  220 

Network analyses were conducted separately for the aboveground and belowground network 221 

Australian datasets. In both cases, we identified ecological clusters of strongly associated taxa 222 

using correlation networks (‘co-occurrence network’) and the following protocol. Our 223 

aboveground network contained 1280 nodes (species of vascular plants, mammals, birds, 224 

reptiles, amphibians, ants, beetles, centipedes, cockroaches, crickets, scorpions and spiders). 225 

In the case of the belowground networks, our datasets included 95,208 Operational 226 

Taxonomic Units (OTUs) of bacteria, fungi, protists and soil invertebrates. These OTUs (aka 227 

phylotypes) were calculated at 97% sequence similarity and can be considered to be 228 

analogous to “species”. However, because of the large number of microbial ‘species’ 229 

compared with other groups (plants and animals) and the need to restrict analyses to a 230 

manageable network of interactions, we focused on the dominant microbial OTUs (top 10% 231 

species sorted by dominance, as described in Soliveres et al. 2016). Dominant species for 232 

bacteria, fungi and other eukaryotes were obtained independently for these organisms from 233 

their original OTU tables. These bacterial, fungal and other eukaryotic taxa were then merged 234 
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into a single abundance table. This resulted in a dataset with 9502 taxa including 4953 235 

bacteria (~80% of all bacterial phylotypes), 2321 fungi (~80% of all fungal phylotypes) and 236 

2228 other eukaryotes phylotypes (~80% of all eukaryotic phylotypes). We then calculated 237 

all pairwise Spearman’s rank correlations (ρ) between all soil plant/animal and soil 238 

microbe/animal taxa. We focused exclusively on positive correlations as they provide 239 

information on microbial taxa that may respond similarly to environmental conditions 240 

(Barberan et al. 2012). We considered a co-occurrence to be robust if the Spearman’s 241 

correlation coefficient ρ was > 0.50 and P < 0.01 (see Barberan et al. 2012 for a similar 242 

approach). The network was visualized with the interactive platform Gephi (Bastian et al. 243 

2009). Finally, we used default parameters from the interactive platform Gephi to identify 244 

ecological clusters (aka modules) of soil taxa strongly interacting with each other (Bastian et 245 

al. 2009). We then computed the relative abundance of each ecological cluster by averaging 246 

the standardized relative abundances (z-score) of the taxa that belong to each ecological 247 

cluster. By standardizing our data, we ruled out any effect of merging data from different soil 248 

groups: plants/animals and soil microbes/animals. In addition, we also used an alternative 249 

approach and calculated the relative abundance of ecological clusters after centered log-ratio 250 

transformation. Information on functional traits for fungal taxa within each ecological cluster 251 

(which is unavailable for bacteria), was obtained from the online application FUNGuild 252 

described in Nguyen et al. (2016). 253 

Variation partitioning modelling 254 

We used Variation Partitioning (Legendre et al. 2008) to quantify the relative importance of 255 

four groups of predictors: 1) six climatic legacies, 2) six climatic variables from current 256 

climate, 3) current management (cattle density in regional Australia and cattle density and 257 

cropping in continental Australia) and 4) soil properties (pH, % of sand, soil C and P) as 258 

predictors of the relative abundance of ecological clusters in the (1) Aboveground network 259 

and (2) Belowground network. This analysis allowed us to identify whether climatic legacies 260 

can explain a unique portion of the variance that is not explained by current climate or 261 

management (Legendre et al. 2008). Note that adjusted coefficients of determination (R2) in 262 

multiple regression and canonical analysis can, on occasion, take negative values (Legendre 263 

et al. 2008). Negative values in the variance explained for a group of predictors on a group of 264 

response variable are interpreted as zeros, and correspond to cases in which the explanatory 265 

variables explain less variation than that explained using random normal variables (Legendre 266 
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et al. 2008). In all cases, Variation Partitioning analyses were conducted with the R package 267 

Vegan (Oksanen et al. 2015).  268 

Random Forest modelling 269 

We conducted a classification Random Forest analysis (Breiman 2001) as described in 270 

Delgado-Baquerizo et al. (2016b) to identify the major predictors of the relative abundance of 271 

ecological clusters in the two networks. Our list of predictors included six climatic legacies, 272 

six climatic variables from current climate, soil properties (pH, % of sand, soil C and P) and 273 

current management (cattle density and/or cropping). These analyses were conducted using 274 

the rfPermute package (Archer et al. 2016) of the R statistical software (http://cran.r-275 

project.org/). We also repeated these analyses using an alternative Random Forest approach 276 

using the gradientforest R package (Strobl et al. 2008; Ellis et al. 2012).  277 

Structural equation modeling 278 

We used structural equation modeling (SEM) (Grace 2006) to evaluate effects of climatic 279 

legacies (i.e., temperature and precipitation differences between estimated climate about 20k 280 

ybp and current climatic estimates) on the relative abundance of ecological clusters in the two 281 

networks, after accounting for spatial autocorrelation (latitude and longitude), soil properties 282 

(pH, % of sand, soil C and P), current management (cattle density and/or cropping) and 283 

current climate. Our a priori model is shown in Fig. S3. The use of SEM is particularly useful 284 

in large scale correlative studies, as it allows the partitioning of causal influences among 285 

multiple variables, and separation of the direct and indirect effects of model predictors (Grace 286 

2006). We then tested the goodness of fit of our models. The goodness of fit of SEM models 287 

was checked following Schermelleh-Engel et al. (2003). There is no single universally 288 

accepted test of overall goodness of fit for SEM, applicable in all situations regardless of 289 

sample size or data distribution (Schermelleh-Engel et al. 2003). We used the χ2 test (χ2; the 290 

model has a good fit when 0 ≤ χ2/DF≤2 and 0.05 <P ≤ 1.00) and the root mean square error of 291 

approximation (RMSEA; the model has a good fit when RMSEA 0 ≤ RMSEA ≤ 0.05 and 0.10 292 

<P ≤ 1.00) (Schermelleh-Engel et al. 2003). Our a priori models attained an acceptable/good 293 

fit by all criteria in all cases, and thus no post hoc alterations were made. With a good model 294 

fit, we were free to interpret the path coefficients of the model and their associated P values. 295 

SEM models were conducted with the software AMOS 20 (IBM SPSS Inc, Chicago, IL, 296 

USA).  297 

Results  298 



10 
 

We first generated two separate ecological networks for 1) aboveground and 2) belowground 299 

using information from the two independent datasets. Using the approach described in the 300 

Methods section, we identified and calculated the relative abundance of six and seven major 301 

ecological clusters of species co-occurrence for aboveground and belowground networks, 302 

respectively (Fig. 1). All taxa included within each ecological cluster for the two networks, 303 

and additional functional information on these taxa, are shown in Figs. S4 and S5 and Table 304 

S1. These ecological clusters include multiple species linked by potential ecological 305 

interactions such as predator/prey, host/parasite, host/symbiont, as well as different tropic 306 

levels, e.g., primary producers and primary consumers (Table S1; Figs S4 and S5). We found 307 

a highly significant correlation between the relative abundance of the ecological clusters 308 

calculated as explained above and the same clusters calculated after using the centered log-309 

ratio transformation (ρ > 0.90; P < 0.001; Table S2).  310 

Our variation partitioning model suggested that climatic legacies explained a unique 311 

portion of the variation for particular ecological clusters that could not be accounted for by 312 

measures of current management, soil properties or current climates (Fig. 1). Climatic 313 

legacies explained a unique and significant portion of the variation of ecological clusters in 314 

five out of six ecological clusters for our aboveground network (AG#) and for seven out of 315 

seven ecological clusters for our belowground network (BG#) (Fig. 1; Table S3). This was 316 

especially noticeable for AG#1 (6 out of 58% of variation explained) and for BG#1 (7.5 out 317 

of 68% of variation explained) and BG#3 (15.5 out of 47% of variation explained). As 318 

expected, current climate and soil properties, routinely proposed as the dominant drivers of 319 

ecosystem community assembly at large spatial scales, also explained a unique portion of the 320 

variation in all ecological clusters (Fig. 1; Table S3). Management was also important for 321 

some clusters (BG#0, 1, 5 and 6), but not for others (Fig. 1; Table S3).  322 

Our Random Forest analyses suggested that climatic legacies were as important as, or 323 

more important than, current climate in predicting the relative abundance of ecological 324 

clusters within our two networks, and after accounting for soil properties and management 325 

(Figs. S6-S9). Temperature legacies, maximum temperature (MAXT) and temperature 326 

seasonality (TSEA), were more consistent than precipitation legacies in predicting the 327 

relative abundance of ecological clusters within the aboveground and belowground networks 328 

(Figs. S6-S9). However, mean precipitation (MAP) and precipitation seasonality (PSEA) 329 

were also reported to be a key climatic legacy predicting the relative abundance of ecological 330 

assemblies in both ecological networks (Figs. S6-S9). These results suggest that climatic 331 

legacies have left a detectable signature on the contemporary ecosystem community assembly 332 
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of unique clusters of plant, animal and microbial species strongly co-occurring with each 333 

other (Table S1; Figs S4 and S5). Importantly, we found a statistically significant correlation 334 

between the Random Forest importances across predictors calculated from each ecological 335 

cluster using the rfPermute and gradientforest R packages (Table S4).  336 

We used SEM, to further clarify the role of climatic legacies in predicting the relative 337 

abundance of contemporary ecosystem community assemblies, independently, for our two 338 

datasets. Although this is quite a conservative procedure, we still found multiple direct effects 339 

of climatic legacies, from all climatic variables studied, on the relative abundance of 340 

particular ecological clusters in both networks (Fig. 2). Remarkably, increases in maximum 341 

temperature legacies had a direct positive effect on the relative abundance of AG#1 and 342 

BG#1. In other words, locations with a positive anomaly for maximum temperature over the 343 

past ~20k years might have promoted the relative abundance of species within AG#1 and 344 

BG#1 (Fig. 3). Other highly significant climatic legacy effects also included a direct negative 345 

effect of temperature seasonality on the relative abundance of AG#2, and direct positive 346 

effects of diurnal temperature range (MDR) and TSEA on BG#2 and 0. Note that for 347 

simplicity, Figure 2 only included direct effects with a P < 0.01 (see Table S5 for direct 348 

effects with a < 0.01 P < 0.05). Remarkably, increases in a given ecological cluster were 349 

often followed by declines in the relative abundance of other ecological clusters, as supported 350 

by the multiple indirect effects among the relative abundance of ecological clusters in our 351 

aboveground and microbe-animal networks (e.g., AG/BG#2 vs. AG/BG#3)(Fig. 2 and 3). 352 

Moreover, we also detected multiple indirect effects of climatic legacies on the relative 353 

abundance of ecological clusters via changes in soil properties for the two studied (Fig. 2).  354 

Discussion 355 

Our findings provide novel evidence that past climates likely played an important role in 356 

regulating the relative abundance of the major ecosystem community assemblages that we 357 

observe today, helping to explain a unique portion of the variation in the distribution of 358 

particular communities that has generally been attributed to stochasticity (e.g. Powell et al. 359 

2015). More specifically, climatic legacies might regulate the relative abundance of multiple 360 

ecological clusters formed by species strongly co-occurring within two independent above- 361 

and below-ground networks (shown in Table S1). These co-occurring taxa included multiple 362 

potential ecological interactions such as predator/prey, host/parasite, host/symbiont, as well 363 

as different tropic levels, e.g. primary producers and primary consumers (Table 1; Figs S3 364 

and S4). For example, AG#1 contains multiple potential predator/prey interactions including 365 

(1) those of the birds species Struthidea cinerea and Turnix velox, with multiple potential 366 
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plant and arthropod preys (Table 1; Table S1), (2) those from the barking spider 367 

(Selenocosmia stirlingi) and the scorpion (Lychas jonesae) with the abundance of potential 368 

ant, beetle and cricket prey or (3) those from the lace monitor (Varanus varius) and the skink 369 

(Ctenotus leonhardii), both of which are related to the abundance of a wide range of 370 

arthropod species that they prey on. Similarly, BG#1 contains potential predator/prey 371 

relationships such as the reported high correlation between the protozoan Cercozoa and 372 

Ciliophora and their common prey soil bacteria. This ecological cluster also contains 373 

multiple fungal plant pathogens such as Truncatella, Coniothyrium and Phoma sp., with 374 

implications for plant communities co-existing with our belowground network. The relative 375 

abundance of all species and potential interactions within AG#1 and BG#1 might have been 376 

promoted by positive anomalies in maximum temperature (Figs. 2 and 3). Supporting this 377 

result, BG#1 contains multiple phylotypes of bacteria that have previously been reported to 378 

respond positively to increases in temperature including those from the genera Candidatus, 379 

Koribacter, Bacillus, Burkholderia and Rhodoplanes (Oliverio et al. 2016). In other words, 380 

locations with the highest positive anomalies in maximum temperature might now support a 381 

greater abundance of species within BG#1 than locations with negative anomalies or no 382 

changes in maximum temperature over the past 20k years.  383 

Interestingly, increases in a given ecological cluster were often followed by declines 384 

in the relative abundance of other ecological clusters, as supported by the multiple indirect 385 

effects among the relative abundance of ecological clusters in our aboveground and microbe-386 

animal networks. Such results suggest that increases in the relative abundance of particular 387 

ecological clusters resulting from temperature legacies might have had multiple cascading 388 

effects on other ecological clusters. Thus, the negative relationship between BG/AG#1 with 389 

BG/AG#2, might also lead to cascading effects on the relative abundance of BG/AG#3 390 

clusters, which were negatively related to BG/AG#2 clusters in both networks (Figs. 2 and 3). 391 

Thus, climatic legacies might also have multiple indirect negative or positive effects on the 392 

relative abundance of the ecological clusters within our two networks, as supported by our 393 

structural equation models (Fig. 2). Cluster BG#2 in the microbe-animal network, contained 394 

multiple probable mycorrhizal species such as Entoloma, Glomus and Claroideoglomus, 395 

which might have positive effects on plant species linked to this soil microbial-network; 396 

some identified using molecular techniques (Table S1). This ecological cluster also includes 397 

potential predator/prey relationships between soil amoeba, and ciliates, with bacteria and 398 

plant pathogens (e.g. Gibberella intricans).  Moreover, for the aboveground network, AG#2 399 

was characterized by the potential producer/consumer link between emus (Dromaius 400 
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novaehollandiae) and the fruits of Lycium ferocissimum, Eremophila debilis and Einadia spp. 401 

(Noble 1991). Our findings suggest that the relative abundance and potential interactions 402 

among species within all of these ecological clusters are highly sensitive to anomalies in 403 

maximum temperatures and their cascading effects (Fig. 3). Changes in ecological clusters #2 404 

in both networks, linked to climatic anomalies, might in turn have multiple cascading effects 405 

on the relative abundance of ecological clusters #3 in both networks. BG#2 is characterized 406 

by potential parasite/host interactions between Gregarina sp. and soil arthropods (Omoto and 407 

Cartwright 2003), predator/prey interactions between phylotypes from phylum Cercozoa 408 

(protist) and bacteria (Table S1) and plant-fungal interactions of symbiosis (e.g. Auritella sp.) 409 

and pathogenesis (e.g. Devriesia sp.). Similarly, AG#3 is characterized by potential 410 

predator/prey interactions among plants, insects, lizards and amphibians.   411 

Although the effects of current or climatic legacies on the community assembly of 412 

terrestrial ecosystems are not directly comparable to those from on-going changes in climate, 413 

our network approach still has the potential to provide insights into the role of climate change 414 

in predicting possible winner and loser community assemblies in response to climate change. 415 

Specifically, our study provides a compendium of species from particular ecological clusters 416 

that are expected to be highly sensitive to changes in climatic conditions. For example, 417 

current maximum temperature, one of the major climatic legacies, is also positively and 418 

strongly influencing the abundance of BG#1 (Fig. 2) and AG#1 (SEM direct effect = 1.45; P 419 

= 0.044; Table S3). This suggests that further increases in temperature predicted by the end of 420 

this century might continue to promote the relative abundance of species and interactions 421 

within this ecological cluster, largely to the detriment of those in BG#2 and AG# 2, with 422 

potential cascading effects on other ecological clusters. In fact, our findings suggest that 423 

positive anomalies of maximum temperature of up to 4°C –comparable to those predicted for 424 

climate change already had a massive effect on the relative abundance of particular 425 

ecological clusters (Fig. 3). Predicted impacts of changes in precipitation with climate change 426 

(Huang et al. 2016) could also be inferred from our network approach. For instance, for our 427 

aboveground network, current precipitation seasonality, whose legacy was positively related 428 

to the abundance of AG#4, indirectly via changes in soil pH, is still having an effect on the 429 

abundance of this ecological cluster, characterized for the potential interactions between the 430 

sand monitor (Varanus gouldii) and its prey items lycosid spiders (Lycosid spp.) and 431 

scorpions (Lychas spp.). Other examples, of key climatic legacies that still drive the relative 432 

abundance of particular ecological clusters can be inferred from Fig. 2 and Tables S1 and S3. 433 

These climatic changes could also alter the proportion of native species or the proportion of 434 
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taxa coming from different species. For example, BG#1 in our microbe-animal network 435 

comprised mainly of phylotypes of strongly occurring bacteria and fungi, but BG# 2 also 436 

contained multiple soil animal taxa.  437 

Finally, as expected (e.g. Gossner et al. 2016), current management also influenced 438 

the relative abundance of ecosystem community assemblies. For example, for our 439 

belowground network, we found strong direct effects of cropping and cattle density on the 440 

relative abundance of the multiple ecological clusters within this network (Fig. 2). Of special 441 

interest is the negative effect of cropping on the relative abundance of BG#1 in our microbe-442 

animal network, which might potentially reverse part of the climatic legacies from maximum 443 

temperature (explained above) on this ecological cluster. Interestingly, BG#2 in the 444 

microbial-animal network, which was indirectly negatively affected by the maximum 445 

temperature legacy, seems to benefit from cropping and cattle density impacts (Fig. 2), 446 

though indirectly, potentially helping to reverse climatic legacies on BG#1. All of these 447 

results accord with previous studies suggesting that human activities can erase part of the 448 

climatic legacies of temperature and precipitation on the current distribution of soil organisms 449 

(Delgado-Baquerizo et al. 2017). However, in general, management measured as cattle 450 

density did not influence the relative abundance of aboveground clusters as supported by our 451 

Variation Partitioning, Random Forest and Structural Equation Modeling analyses. The only 452 

ecological cluster affected by cattle density in this network was AG#5, shown in our Random 453 

Forest results (Fig. S6).  454 

Together, our work suggests that climatic legacies have left a statistically significant 455 

signature on the contemporary below- and above-ground community assemblies and can now 456 

explain a unique portion of the distribution in particular ecological clusters from terrestrial 457 

ecosystems. This is true even after accounting for key predictors such as location, soil 458 

properties, current climate or management, all of which are routinely proposed as drivers of 459 

ecosystem community assemblies at large spatial scales. These findings also advance our 460 

understanding of the links between particular climatic legacies and the relative abundance of 461 

species and potential interaction within ecological clusters across a broad range of ecosystem 462 

types at the continental scale. Moreover, we found that climatic anomalies might have led to 463 

multiple cascading effect on the relative abundance of ecological clusters in terrestrial 464 

ecosystems. We also found that current management influences can potentially reverse part 465 

of the impacts of climatic legacies, which occurred during the last 20k years, on particular 466 

ecological clusters. Such knowledge can potentially help us to better understand changes in 467 
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particular ecosystem community assemblies in response to on-going global environmental 468 

change including land use intensification and climate change, with important implications for 469 

future sustainable management and conservation policies.  470 
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 600 

Figure 1. Relative contribution of the different predictors used to model the relative 601 

abundance of ecological clusters within our aboveground and belowground networks. Upper 602 

right panels represent network diagrams with nodes coloured by each ecological cluster 603 

within our aboveground and microbe-animal networks. A characterization of the taxa within 604 

each ecological cluster is available in Table S1. Bottom left panels represent results from 605 

Variation Partitioning modelling aiming to identity the percentage variance of relative 606 

abundance of ecological clusters explained by climatic legacies, current climate and 607 

management. Associated P-values to the relative contribution of the different predictors are 608 

available in Table S3. AG = Aboveground network. BG = Belowground network. 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 



20 
 

 622 

Figure 2. Mechanistic modeling identifying the direct and indirect effects of climatic legacies 623 

on the relative abundance of ecological clusters within our aboveground and belowground 624 

networks. For simplicity, only effects with a P < 0.01 are reported here. The rest of 625 

significant effects are available in Table S5 (0.01 < P < 0.05). Numbers adjacent to arrows 626 

indicate the effect-size. R2 denotes the proportion of variance explained. The size of the 627 

arrow is proportional to the effect size (but in the case of spatial influence). Climatic legacies, 628 

current climate and management predictors are included in our models as independent 629 

observable variables, however we grouped them in the same box in the model for graphical 630 

simplicity. AG = Aboveground network. BG = Belowground network. 631 
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 632 

Figure 3. Selected relationships from our SEMs. Panels include relationship between 633 

maximum temperature legacy and ecological clusters #1 within our aboveground and 634 

belowground networks. Also, selected relationships between ecological clusters #1 and 2, and 635 

ecological clusters #2 and 3 in both independent networks. AG = Aboveground network. BG 636 

= Belowground network. See Fig. S10 for an alternative version of this figure using 637 

ecological clusters calculated after centred log-ratio transformation and showing similar 638 

results.  639 
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 679 

 680 

 681 

 682 

 683 

Appendix S1. Information on the plant and animal sampling to obtain the data used to 684 

build our plant-animal network (regional scale).  685 

Each site comprised a 200 m long transect running perpendicular to the nearest livestock 686 

watering point, which was generally an earthen dam. Along this transect we positioned five 687 

25 m2 (5 m x 5 m) plots every 50 m, within which we centrally located a smaller (0.5 m x 0.5 688 

m) quadrat (‘small quadrat’). We first assessed the relative abundance (i.e., number of 689 

individuals) and diversity (i.e., species richness) of groundstorey (grasses and forbs) in the 5 690 

m by 5 m quadrats, and the cover of  woody plants (trees, shrubs, subshrubs) at 100 points, 691 

located every 2 m along the 200 m transect using a point-intercept method. We then 692 

conducted multiple animal surveys. Bird surveys, diurnal reptile searches and incidental 693 

records of vertebrates were conducted in an area 100 m x 200 m along transects. Bird surveys 694 

were conducted during spring to early summer (September to November) over two 695 

consecutive years. In each year, all sites were sampled twice for 20 minutes, on different days 696 

at different times, by a single observer. Surveys commenced from dawn and concluded by 12 697 

noon, or earlier if ambient temperatures reached 30o C or if it became excessively windy (> 698 

39 km/hr). Along the 200m transect, we positioned five grids of wet-pitfall traps at 50 m 699 

intervals for invertebrate sampling, and four trap lines for vertebrate sampling at the 50 m, 700 

100 m, 150 m, and 200 m transect locations. Small mammals and reptiles were surveyed 701 

using dry pitfall traps, funnel traps, Elliott traps and timed searches. Vertebrate trap lines 702 

consisted of two 20 L buckets (150 mm deep), two 150 mm diameter PVC pipes (500-600 703 

mm deep), and four double-ended funnel traps placed under or along a 20 m drift-fence. Dry 704 

pitfall traps were placed flush with the ground under the drift fence. Captured specimens 705 

were provided with shade cloth sheets, PVC tubes, Styrofoam blocks, litter and some soil in 706 

each trap to prevent over-heating or drowning in the event of rain. Ant rid powder and sprays 707 

were used at sites where ants were abundant.  Funnel traps were located at either side of the 708 

drift fence, between the end pairs of pitfall traps. A 90% shade-cloth cover was placed over 709 

the top of the funnel traps to buffer temperatures inside the traps. Captured specimens were 710 
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provided with a cardboard roll and/or a sheet of sarking for shelter. In addition, four Elliot 711 

traps were also positioned near each trap line in appropriate habitat patches such as under 712 

shrubs, or near logs or rocks to enhance capture rates. Each trap was baited with a mixture of 713 

rolled oats and peanut butter. Traps were covered with shade cloth cover to buffer 714 

temperature extremes for captured specimens. Wet pitfall traps were 250 ml plastic screw-top 715 

containers half filled with ethylene glycol, installed at each corner of a 5 m x 5 m plot, plus 716 

one trap located centrally within the plot. Each pitfall trap was placed flush with the ground 717 

with a cover to prevent damage or loss of material due to rainfall. Traps were left open for 718 

five consecutive nights at each site. All vertebrate trap-lines were checked and cleared early 719 

each morning and late each afternoon over a 4 day period (eight times) and each species 720 

identified. Finally, two 30-minute habitat searches were undertaken at each 100 m x 200m 721 

site on different afternoons. Searches were targeted towards potential reptile habitat (e.g. 722 

open patches, leaf litter, logs, rocks, bark) by experienced personnel. Ground-dwelling 723 

invertebrates were sampled using both wet and dry pitfall traps with incidental specimens of 724 

large invertebrates (i.e. scorpions, spiders, centipedes, beetles, etc. > 1 cm, but excluding 725 

ants) collected from the vertebrate fauna pitfall traps each morning. All fauna surveys were 726 

conducted with approval from the New South Wales Animal Ethics Committee (Approval 727 

number: 140602/02). 728 

Appendix S2. Molecular analyses conducted to characterize the soil microbial and 729 

animal community used to build our soil microbe-animal network (continental scale). 730 

All soil DNA was extracted in triplicate, according to the methods employed by the Earth 731 

Microbiome Project (Bissett et al. 2016). Amplicons targeting the bacterial 16S rRNA, fungal 732 

Internal transcribed spacer (ITS) and Eukaryotic 18S rRNA genes were sequenced using the 733 

Illumina Miseq platform and the 27F – 519R, ITS1F–ITS4 and Euk_1391f–EukBr primer set, 734 

respectively (Bissett et al. 2016). Bioinformatic analyses were performed using MOTHUR 735 

(v1.34.1) as explained in Bissett et al. (2016). Operational Taxonomic Units (OTU) were 736 

picked at 97% sequence similarity. The OTU abundance tables were rarefied at 14237, 2901 737 

and 4866 sequences/sample for bacteria, fungi and eukaryotes to ensure even sampling depth. 738 

In the case, of eukaryotes, we removed all fungal OTUs from the eukaryotic dataset as we are 739 

already using a higher resolution maker (ITS) to characterize the fungal community in our 740 

samples.  741 

Appendix S3. Soil properties and current management   742 



25 
 

Soil properties were used using standardized lab protocols. Soil properties were measured as 743 

described in Eldridge et al. (2016) and Bissett et al. (2016). For the plant-animal dataset, we 744 

did not have soil pH. Soil pH information was obtained from Hengl et al. (2017) for the 745 

locations in this study. These authors produced 250m resolution global maps that included 746 

information on multiple soil properties. Predicted information on soil pH was cross-validated 747 

using the continental Australia dataset described above. In this dataset, pH measured in the 748 

field was significantly and positively related (Spearman ρ = 0.65; P < 0.01) to pH obtained 749 

for each plot using map predictions from Hengl et al. (2017). 750 

For current management in the regional Australian dataset of plant-animal networks, 751 

information on the intensity of grazing by cattle was measured in the field. In brief, within the 752 

large quadrats used for the vegetation survey, we counted dung events, i.e. we considered a 753 

number of small fragments to have originated from one dung event, if the fragments were 754 

within an area of a few metres. We used algorithms, developed previously for the study area 755 

(Eldridge et al. 2016), to calculate the total oven-dried mass of dung per hectare based on the 756 

number of pellets recorded in the field. This total oven dried mass of dung was used as our 757 

measure of recent grazing intensity by cattle. Dung and pellet counts have been used widely 758 

to estimate the abundance of large herbivores (Johnson and Jarman 1987; Marques et al. 759 

2001). 760 

 For the continental Australian dataset (BASE project) used to estimate soil microbe-761 

animal networks, we obtained information on the density of cattle from Robinson et al. 762 

(2014). These authors produced 1 km resolution global maps that included information on 763 

livestock densities. Predicted information on cattle density from these models was cross-764 

validated using the regional NSW dataset described above. In this dataset, cattle density 765 

measured in the field using the dung approach was significantly and positively related 766 

(Spearman ρ = 0.20; P < 0.01) to density of cattle obtained for each plot using map 767 

predictions from Robinson et al. (2014).  768 

 769 

 770 

 771 

 772 

 773 



26 
 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

Table S1. List of taxa included in each of the ecological clusters within our aboveground and 782 

belowground networks and associated functional fungal traits.  783 

Table S1 is available online as a Separate .XLS file under the Supporting Materials for this 784 

article. 785 

 786 

Table S2. Correlation (Spearman) between relative abundance of ecological clusters used in 787 

this manuscript with the same clusters calculated after using centered log-ratio 788 

transformation.  789 

Parameter #0 #1 #2 #3 #4 #5 #6 

Aboveground ρ 0.95 0.96 0.90 0.99 0.97 0.96 

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Belowground ρ 0.98 0.98 0.99 0.99 0.99 0.97 0.98 

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 790 

 791 

 792 

 793 

 794 

 795 

 796 
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 804 

 805 

 806 

 807 

 808 

Table S3. P-values associated to the relative contribution of the different predictors used to 809 

model the relative abundance of ecological clusters within our aboveground and belowground 810 

networks. AG = Aboveground network. BG = Belowground network. 811 

 812 

Dataset Ecological 

cluster 

Climatic 

legacies 

Current 

climate 

Management Soil 

properties 

Aboveground 

network 

AG#0 0.001 0.001 0.231 0.001 

 AG#1 0.001 0.001 0.879 0.001 

 AG#2 0.002 0.001 0.448 0.001 

 AG#3 0.289 0.104 0.841 0.026 

 AG#4 0.001 0.001 0.819 0.001 

 AG#5 0.001 0.001 0.085 0.001 

Belowground 

network 

BG#0 0.001 0.001 0.459 0.001 
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 BG#0 0.001 0.001 0.005 0.001 

 BG#1 0.001 0.001 0.001 0.001 

 BG#2 0.001 0.001 0.192 0.001 

 BG#3 0.001 0.001 0.121 0.001 

 BG#4 0.001 0.001 0.105 0.005 

 BG#5 0.001 0.001 0.001 0.001 

 BG#6 0.001 0.001 0.001 0.001 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

Table S4. Correlation (Spearman) between Random Forest importance across predictors 822 

calculated for each ecological cluster using the rfPermute and gradientforest R packages.  823 

 824 

Paramete
r #0 #1 #2 #3 #4 #5 #6 

Aboveground ρ 0.87 0.89 0.91 0.85 0.94 0.92 

P-value 
<0.00

1 
<0.00

1 
<0.00

1 
<0.00

1 
<0.00

1 
<0.00

1 

Belowground ρ 0.90 0.93 0.85 0.91 0.91 0.95 0.91 

P-value 
<0.00

1 
<0.00

1 
<0.00

1 
<0.00

1 
<0.00

1 
<0.00

1 
<0.00

1 

 825 

 826 
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 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

Table S5. Standardized direct effects (0.01 < P < 0.05) from the SEM in Fig. 2. 850 

 851 

Network Response variables   Predictors Standardized 
effect P-value 
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Aboveground 
network AG#2 

← 
Latitude 1.523 0.01 

AG#4 ← MAXT -1.573 0.011 

AG#2 ← TSEA legacy -0.701 0.015 

MINT legacy ← Latitude -0.238 0.021 

AG#5 ← MAP 0.863 0.023 

AG#1 ← MDR -0.742 0.025 

AG#4 ← MAP -0.616 0.027 

AG#2 ← MAXT legacy -0.91 0.027 

AG#0 ← Latitude -1.371 0.028 

AG#0 ← MINT 1.493 0.03 

AG#1 ← TSEA legacy 0.651 0.038 

AG#4 ← Sand content 0.209 0.038 

AG#5 ← Sand content 0.18 0.038 

AG#0 ← MAXT legacy -2.011 0.042 

AG#1 ← MAXT legacy 1.45 0.044 

Sand content ← PSEA 0.31 0.045 

AG#0 ← Sand content -0.158 0.046 

AG#1 ← Sand content 0.205 0.047 

AG#5 ← MINT -1.07 0.049 

Belowground 
network pH <--- MINT 1.718 0.01 

BG#5 <--- Sand content 0.101 0.01 

pH <--- TSEA 1.046 0.011 

BG#6 <--- PSEA -0.246 0.011 

BG#3 <--- MAP 0.219 0.012 

BG#0 <--- TSEA legacy 0.851 0.012 

Soil C <--- PSEA legacy -0.232 0.013 

Soil P <--- MINT legacy -0.597 0.015 

Soil P <--- Cattle 0.101 0.015 

BG#0 <--- TSEA -1.117 0.015 

BG#5 <--- TSEA -0.88 0.016 

BG#5 <--- MINT legacy -0.57 0.016 

pH <--- Latitude  0.457 0.019 

BG#5 <--- MAP legacy 0.194 0.019 

BG#5 <--- Longitude 0.203 0.028 
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BG#4 <--- PSEA legacy -0.335 0.028 

BG#1 <--- Longitude -0.232 0.031 

BG#1 <--- Sand content 0.108 0.033 

BG#3 <--- Soil P -0.079 0.033 

pH <--- TSEA legacy -0.704 0.034 

BG#4 <--- MDR -1.274 0.034 

BG#5 <--- MDR -0.595 0.034 

BG#4 <--- MAXT 2.658 0.035 

MAP legacy <--- Longitude 0.165 0.036 

MAP legacy <--- Latitude  0.142 0.037 

TSEA <--- Latitude  -0.144 0.038 

pH <--- Cattle 0.104 0.038 

Sand content <--- PSEA legacy -0.213 0.039 

BG#2 <--- MAP 0.134 0.043 

BG#6 <--- Cattle 0.148 0.044 

PSEA legacy <--- Latitude  -0.096 0.049 
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 857 

Figure S1. Location of the sites included in the studies of aboveground network (n = 108) in 858 

yellow and the belowground network (n = 439) in red.  859 
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 872 

 873 

 874 

Figure S2. MAP and MAXT legacy distribution across the 547 locations included in this 875 

study.  876 
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 880 

 881 

Figure S3. A priori structural equation model including direct and indirect effects of 882 

geographical location, climatic legacies, current climate and management on the relative 883 

abundance of ecological clusters (EC #) within our aboveground and belowground networks. 884 

Predictors within climatic legacy, current climate, spatial (latitude and longitude) and 885 

management are allowed to co-vary in these analyses.  886 
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 899 

 900 

 901 

Figure S4. Taxonomic composition (% of taxa within each ecological cluster) for six well-902 

defined clusters of strongly co-occurring soil taxa within our aboveground. AG = 903 

Aboveground network.  904 
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 908 

Figure S5. Taxonomic composition (% of taxa within each ecological cluster) for seven well-909 

defined clusters of strongly co-occurring soil taxa within our belowground. BG = 910 

Belowground network. 911 

 912 

 913 
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 914 

Figure S6. Random Forest analysis (rfPermute R package) aiming to identify the best 915 

individual predictors of the relative abundance of ecological clusters within our aboveground 916 

network. Predictors include those within climatic legacies, current climate and management 917 

categories. MSE = Mean Square Error. AG = Aboveground network.  918 
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 919 

Figure S7. Random Forest analysis (rfPermute R package) aiming to identify the best 920 

individual predictors of the relative abundance of ecological clusters within our beloground 921 

network. Predictors include those within climatic legacies, current climate and management 922 

categories. MSE = Mean Square Error. BG = Belowground network. 923 
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 924 

Figure S8. Random Forest analysis (gradientforest R package) aiming to identify the best 925 

individual predictors of the relative abundance of ecological clusters within our aboveground 926 

network. Predictors include those within climatic legacies, current climate and management 927 

categories. AG = Aboveground network.  928 
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 932 

Figure S9. Random Forest analysis (gradientforest R package) aiming to identify the best 933 

individual predictors of the relative abundance of ecological clusters within our beloground 934 

network. Predictors include those within climatic legacies, current climate and management 935 

categories. BG = Belowground network. 936 
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 937 

Figure S10. Selected relationships from our SEMs. Panels include relationship between 938 

maximum temperature legacy and ecological clusters #1 within our aboveground and 939 

belowground networks. Also, selected relationships between ecological clusters #1 and 2, and 940 

ecological clusters #2 and 3 in both independent networks. Data was centered log-ratio 941 

transformed before ecological clustered were calculated. AG = Aboveground network. BG = 942 

Belowground network. CLR = Centered log-transformation.  943 
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