Journal article Open Access
Crocket, Kirsty; Hill, Emily; Abell, Richard; Johnson, Clare; Gary, Stefan; Brand, Tim; Hathorne, E.
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20191102191159.0</controlfield> <controlfield tag="001">1323738</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">SAMS</subfield> <subfield code="a">Hill, Emily</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">SAMS</subfield> <subfield code="a">Abell, Richard</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">SAMS</subfield> <subfield code="a">Johnson, Clare</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">SAMS</subfield> <subfield code="a">Gary, Stefan</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">SAMS</subfield> <subfield code="a">Brand, Tim</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">GEOMAR</subfield> <subfield code="a">Hathorne, E.</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">8791264</subfield> <subfield code="z">md5:68fd6a89d6e2c18f11313e52776f2a08</subfield> <subfield code="u">https://zenodo.org/record/1323738/files/crocket_ea_as_accepted.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2018-04-30</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">user-atlas</subfield> <subfield code="o">oai:zenodo.org:1323738</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="v">5</subfield> <subfield code="p">Frontiers in Marine Science</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">SAMS</subfield> <subfield code="a">Crocket, Kirsty</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Rare Earth Element distribution in the NE Atlantic: Evidence for benthic sources, longevity of the seawater signal, and biogeochemical cycling</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-atlas</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">678760</subfield> <subfield code="a">A Trans-AtLantic Assessment and deep-water ecosystem-based Spatial management plan for Europe</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Seawater rare earth element (REE) concentrations are increasingly applied to reconstruct</p> <p>water mass histories by exploiting relative changes in the distinctive normalised patterns.</p> <p>However, the mechanisms by which water masses gain their patterns are yet to be</p> <p>fully explained. To examine this, we collected water samples along the Extended Ellett</p> <p>Line (EEL), an oceanographic transect between Iceland and Scotland, and measured</p> <p>dissolved REE by offline automated chromatography (SeaFAST) and ICP-MS. The</p> <p>proximity to two continental boundaries, the incipient spring bloom coincident with the</p> <p>timing of the cruise, and the importance of deep water circulation in this climatically</p> <p>sensitive gateway region make it an ideal location to investigate sources of REE to</p> <p>seawater and the effects of vertical cycling and lateral advection on their distribution. The</p> <p>deep waters have REE concentrations closest to typical North Atlantic seawater and are</p> <p>dominated by lateral advection. Comparison to published seawater REE concentrations</p> <p>of the same water masses in other locations provides a first measure of the temporal</p> <p>and spatial stability of the seawater REE signal. We demonstrate the REE pattern is</p> <p>replicated for Iceland-Scotland OverflowWater (ISOW) in the Iceland Basin from adjacent</p> <p>stations sampled 16 years previously. A recently published Labrador Sea Water (LSW)</p> <p>dissolved REE signal is reproduced in the Rockall Trough but shows greater light and</p> <p>mid REE alteration in the Iceland Basin, possibly due to the dominant effect of ISOW</p> <p>and/or continental inputs. An obvious concentration gradient from seafloor sediments to</p> <p>the overlying water column in the Rockall Trough, but not the Iceland Basin, highlights</p> <p>release of light and mid REE from resuspended sediments and pore waters, possibly</p> <p>a seasonal effect associated with the timing of the spring bloom in each basin. The</p> <p>EEL dissolved oxygen minimum at the permanent pycnocline corresponds to positive</p> <p>heavy REE enrichment, indicating maximum rates of organic matter remineralisation</p> <p>and associated REE release. We tentatively suggest a bacterial role to account for the</p> <p>observed heavy REE deviations. This study highlights the need for fully constrained</p> <p>REE sources and sinks, including the temporary nature of some sources, to achieve</p> <p>a balanced budget of seawater REE.</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.3389/fmars.2018.00147</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 43 |
Downloads | 36 |
Data volume | 316.5 MB |
Unique views | 43 |
Unique downloads | 34 |