Active Resistance Emulation in Three-Phase Rectifier with Suboptimal Current Injection

Milan Darijević¹, Predrag Pejović¹, Yasuyuki Nishida², and Johann Walter Kolar³

¹University of Belgrade, Faculty of Electrical Engineering, Serbia darijevic@gmail.com, peja@etf.rs ²Chiba Insitute of Technology, Japan nishida_yas@nifty.com ³Swiss Federal Insitute of Technology, Zürich, Switzerland kolar@lem.ee.ethz.ch

うして ふゆう ふほう ふほう ふしつ

Introduction

- ▶ three-phase current injection based rectifier
- suboptimal current injection
- ▶ resistance emulator to improve efficiency
- ▶ to use the dc-side filter or not?

Predrag Pejović, Predrag Božović, Doron Shmilovitz, "Low Harmonic, Three-Phase Rectifier that Applies Current Injection and a Passive Resistance Emulator," IEEE Power Electronics Letters, vol. 3, no. 3, pp. 96–100, September 2005

- optimization of R_E to achieve minimal THD
- ▶ the optimum somewhere close to the CCM-DCM boundary

- models needed to optimize R_E
- optimization
- experiments

Introduction, the rectifier

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()~.

Introduction, now makes sense

- ▶ three-phase current injection based rectifier
- suboptimal current injection
- ▶ resistance emulator to improve efficiency
- ▶ to use the dc-side filter or not?

Predrag Pejović, Predrag Božović, Doron Shmilovitz, "Low Harmonic, Three-Phase Rectifier that Applies Current Injection and a Passive Resistance Emulator," IEEE Power Electronics Letters, vol. 3, no. 3, pp. 96–100, September 2005

- optimization of R_E to achieve minimal THD
- ▶ the optimum somewhere close to the CCM-DCM boundary

- models needed to optimize R_E
- optimization
- experiments

Models

- ▶ goal: determine $i_k, k \in \{1, 2, 3\}$
- ▶ simplify the circuit as much as reasonably possible
- ▶ include the DCM!!!
- equivalent circuit methods

Predrag Božović, Predrag Pejović, "Current Injection Based Low Harmonic Three Phase Diode Bridge Rectifier Operating in Discontinuous Conduction Mode," IEE Proceedings Electric Power Applications, vol. 152, no. 2, pp. 199-208

- ▶ let's define:
 - 1. $v_{A0} = \max(v_1, v_2, v_3)$
 - 2. $v_{B0} = \min(v_1, v_2, v_3)$
- ▶ diodes DA and DB to model the DCM
- out of four possible diode state combinations, three are of interest

うして ふゆう ふほう ふほう ふしつ

Model of the rectifier with the filter

 $I_{ER} = \overline{v_{AV} i_Y} / \overline{(v_A - v_B)}$, averaging present

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへぐ

Model of the rectifier without the filter

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

 $i_{ER} = v_{AV} \, i_Y \; / \; (v_A - v_B)$, no averaging

Solving the models

- determine i_A and i_B from the equivalent circuits
- determine i_1 , i_2 , and i_3 from i_A and i_B
- convenient to normalize, v's over V_m , i's over I_{OUT}
- ▶ the rest is mathematics ...
- iterate over R_E to optimize
- ▶ normalization, not exactly R_E , but $G \triangleq V_m / (I_{OUT} R_E)$

Optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Optimization results

▶ with filter:

- 1. $G_{OPT} = V_m / (I_{OUT} R_{E \ OPT}) = 6.62$
- 2. optimum in CCM
- 3. $THD_{min} = 4.01\%$
- 4. on R_E there is 8.66% of P_{IN}

without filter:

1. $G_{OPT} = V_m / (I_{OUT} R_{E \ OPT}) = 6.50$

うして ふゆう ふほう ふほう ふしつ

- 2. optimum in DCM
- 3. $THD_{min} = 4.22\%$
- 4. on R_E there is 8.40% of P_{IN}

▶ there is no need to use the filter!

Experiments

▶ goal: to verify models and the analysis

ション ふゆ マ キャット マックシン

- \blacktriangleright up to 2 kW experimental setup
- ▶ input voltages 100 V rms
- output voltage about 230 V
- ▶ output current 5 A

Resistance emulator

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Experimental results, with the filter

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Experimental results, without the filter

1 9 9 P

Experimental results, joined

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Experiment, no filter, i_1 and v_1

Experiment, with filter, i_1 and v_1

Experiment, no filter, i_Y and v_{AV}

Experiment, with filter, i_Y and v_{AV}

Experiment, phase currents shapes

no filter

with filter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions

- ▶ three-phase rectifier with suboptimal current injection
- ▶ resistance emulator, output filter needed or not?
- ▶ models developed, DCM included
- optimization over R_E to minimize THD performed
- optimization results:
 - 1. with filter $THD_{min} = 4.01\%$, in CCM, 8.66% of P_{IN}
 - 2. without filter $THD_{min} = 4.22\%$, in DCM, 8.40% of P_{IN}

- filter not needed!!!
- experimental verification
- excellent agreement with the model