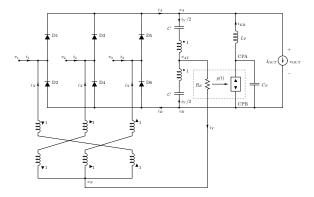
Active Resistance Emulation in Three-Phase Rectifier with Suboptimal Current Injection

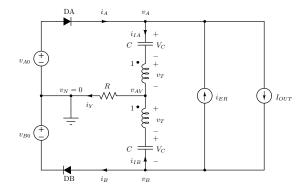

Milan Darijević 1, Predrag Pejović 1, Yasuyuki Nishida 2, and Johann Walter Kolar 3

¹University of Belgrade, Faculty of Electrical Engineering, Serbia darijevic@gmail.com, peja@etf.rs

²Chiba Insitute of Technology, Japan nishida_yas@nifty.com

³Swiss Federal Insitute of Technology, Zürich, Switzerland kolar@lem.ee.ethz.ch

Introduction, the rectifier


Models

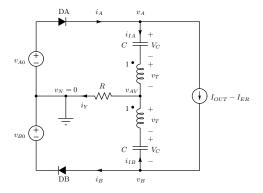
- ▶ goal: determine i_k , $k \in \{1, 2, 3\}$
- ▶ simplify the circuit as much as reasonably possible
- \blacktriangleright include the DCM!!!
- ▶ equivalent circuit methods

Predrag Božović, Predrag Pejović, "Current Injection Based Low Harmonic Three Phase Diode Bridge Rectifier Operating in Discontinuous Conduction Mode," IEE Proceedings Electric Power Applications, vol. 152, no. 2, pp. 199-208

- ▶ let's define:
 - 1. $v_{A0} = \max(v_1, v_2, v_3)$
 - 2. $v_{B0} = \min(v_1, v_2, v_3)$
- \blacktriangleright diodes DA and DB to model the DCM
- out of four possible diode state combinations, three are of interest.

Model of the rectifier without the filter

 $i_{ER} = v_{AV} i_Y / (v_A - v_B)$, no averaging

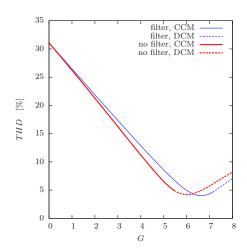

Introduction

- ▶ three-phase current injection based rectifier
- suboptimal current injection
- ▶ resistance emulator to improve efficiency
- to use the dc-side filter or not?
 Predrag Pejović, Predrag Božović, Doron Shmilovitz, "Low Harmonic, Three-Phase
 Rectifier that Applies Current Injection and a Passive Resistance Emulator," IEEE
 Power Electronics Letters, vol. 3, no. 3, pp. 96-100, September 2005
- optimization of R_E to achieve minimal THD
- ▶ the optimum somewhere close to the CCM-DCM boundary
- ightharpoonup models needed to optimize R_E
- optimization
- experiments

Introduction, now makes sense

- ▶ three-phase current injection based rectifier
- ▶ suboptimal current injection
- resistance emulator to improve efficiency
- ▶ to use the dc-side filter or not?
 Predrag Pejović, Predrag Božović, Doron Shmilovitz, "Low Harmonic, Three-Phase
 Rectifier that Applies Current Injection and a Passive Resistance Emulator," IEEE
 Power Electronics Letters, vol. 3, no. 3, pp. 96-100, September 2005
- ightharpoonup optimization of R_E to achieve minimal THD
- ▶ the optimum somewhere close to the CCM-DCM boundary
- ightharpoonup models needed to optimize R_E
- optimization
- experiments

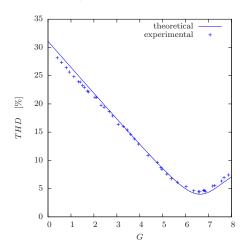
Model of the rectifier with the filter

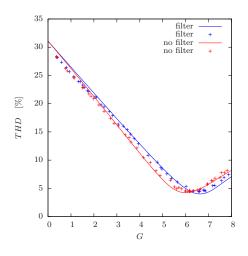


 $I_{ER} = \overline{v_{AV} i_Y} / \overline{(v_A - v_B)}$, averaging present

Solving the models

- \blacktriangleright determine i_A and i_B from the equivalent circuits
- ▶ determine i_1 , i_2 , and i_3 from i_A and i_B
- ightharpoonup convenient to normalize, v's over V_m , i's over I_{OUT}
- ▶ the rest is mathematics . . .
- ightharpoonup iterate over R_E to optimize
- ▶ normalization, not exactly R_E , but $G \triangleq V_m/(I_{OUT} R_E)$

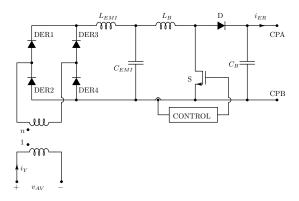

Optimization


Experiments

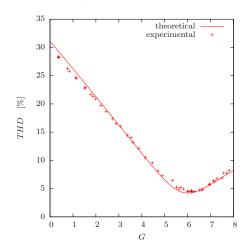
- \blacktriangleright goal: to verify models and the analysis
- ightharpoonup up to 2 kW experimental setup
- \blacktriangleright input voltages 100 V rms
- \blacktriangleright output voltage about 230 V
- ▶ output current 5 A

Experimental results, with the filter

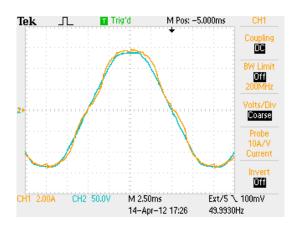
Experimental results, joined

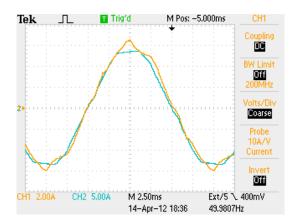

Optimization results

- ▶ with filter:
 - 1. $G_{OPT} = V_m/(I_{OUT}\,R_{E\ OPT}) = 6.62$ 2. optimum in CCM


 - 3. $THD_{min} = 4.01\%$
 - 4. on R_E there is 8.66% of P_{IN}
- ▶ without filter:
 - 1. $G_{OPT} = V_m/(I_{OUT}\,R_{E~OPT}) = 6.50$ 2. optimum in DCM

 - 3. $THD_{min} = 4.22\%$
 - 4. on R_E there is 8.40% of P_{IN}
- ▶ there is no need to use the filter!

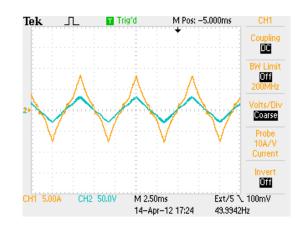

Resistance emulator


Experimental results, without the filter

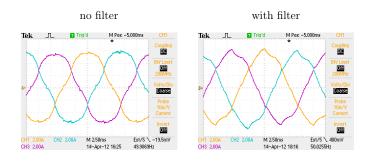
Experiment, no filter, i_1 and v_1

Experiment, with filter, i_1 and v_1

Experiment, with filter, i_Y and v_{AV}



Conclusions


- \blacktriangleright three-phase rectifier with suboptimal current injection
- ▶ resistance emulator, output filter needed or not?
- \blacktriangleright models developed, DCM included
- ightharpoonup optimization over R_E to minimize THD performed
- ▶ optimization results:

 - 1. with filter $THD_{min}=4.01\%$, in CCM, 8.66% of P_{IN} 2. without filter $THD_{min}=4.22\%$, in DCM, 8.40% of P_{IN}
- ▶ filter not needed!!!
- experimental verification
- excellent agreement with the model

Experiment, no filter, i_Y and v_{AV}

Experiment, phase currents shapes

