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» simple

> inexpensive

> robust

» AC side parameters?

» AC side compliance with regulations?

» DC side parameters, dependence of Voyr on Ipyr?
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» continuous conduction mode (CCM) covered, three diodes
conduct

» what about the discontinuous conduction mode(s) (DCM)?
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» output ripple neglected, voyr = Vour

» symmetrical undistorted three-phase system
2
> v = Vpp, cos (wt— (k—1) %) , for k € {1,2,3}

» resistance neglected
» line inductance can be included in the model

» ideal diodes assumed, Vp could be included
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> ideal diodes assumed

» one bit sufficient to code diode state, either on or off
» 6 diodes, 26 = 64 combinations

» some combinations forbidden

» Vour > 0, diodes in pairs (D1, D2), (D3, D4), and (D5,
D6) cannot conduct simultaneously

» pair coded as +1, 0, or —1, reduction to 3% = 27 states

> i1 +ig + i3 = 0, combinations like (+1,+1,+1), (—1,0,—1),
or (0,0,+1) cannot occur, 14 of them

» final reduction to 13 combinations (out of 64)



Combinations of diode states, listed

phase leg state
combination 1 2 3
0 0 0 0
1 +1 -1 0
2 +1 0 -1
3 -1 +1 0
4 0o +1 -1
5 -1 0 +1
6 0 -1 +1
7 +1 +1 -1
8 +1 -1 41
9 -1 +1 +1
10 +1 -1 -1
11 -1 +1 -1
12 -1 -1 +1
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» k=Ji=Jn=20
» myg —mp = Mour

v

mi < Mour

v

the system order is zero
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i1

dp 3 (my —my — Mour), i = —Jjk, jn =0

> myg = D) (Mour —my), mp = 5 (Mout + mn)
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» state(k) = +1, state(l) = —1, state(n) =0

dj 1 . L
> di;j:§(mk—ml—M0UT),]lZ—Jk,JnZO
1 1
> mA =g (Mour —mp), mp = 2 (Mour +my)

> ji > 0, to combination 0 if violated

1
> m, < gMOUT leg n to state +1 if violated

1
> my, > _gMOUT leg n to state —1if violated

» the circuit is of the first order
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» mode 2, combinations with 0, 2, and 3 conducting diodes

» mode 3, combinations with 2, and 3 conducting diodes



Modes

mode 0,
mode 1,
mode 2,
mode 3,

mode 4,

only combination 0

combinations with 0 and 2 conducting diodes
combinations with 0, 2, and 3 conducting diodes
combinations with 2, and 3 conducting diodes

only combinations with 3 conducting diodes, CCM



Dependence of the operating mode on Moyr
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Mode 2, waveforms of i1, vy, and vy, Moyr = 1.6475

N T
i1/Iour
my -

ji/Jouvr = i1/louT
o
mi, mxi

0 60 120 180 240 300 360
v [°]



Mode 3, waveforms of i1, vy, and vx1, Moyr = 1.5
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Mode 4, waveforms of 71, v1, and vx1, Moyr =1
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Dependence of Moyr on Joyr
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Dependence of the rectifier power and apparent power on
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Dependence of the rectifier power factor and the
displacement power factor on Moyr.
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Dependence of PFx and DPF'xy on Moyt
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Dependence of THD(vxy) on Moyt
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Dependence of THD(iy) on Moyt
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Conclusions 1

» numerical analysis of a three-phase voltage loaded rectifier

» analysis performed on the equation system level,
normalization

» insight in the rectifier operation, identification of the
operating modes

» combinations of diode states, combinatorial approach

» out of 26 = 64 combinations of diode states only 13 might
occur

» for all 13 circuit equations are derived

» circuit order might be zero, one, or two, depending on the
diode state combination
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Conclusions 2

» boundary inequalities are derived, combination transition
rules

» instantaneous combination transitions

» modes of the circuit operation are defined

» simulation, Moyt from 2 to 0 in steps of 0.0005
» dependence of Moyt on Joyr is presented

» dependence on Moyt of P, S, PF, PFx, DPF, DPFx,
THD(ix), THD(vxg)

» obtained diagrams quick reference guide for the rectifier
design

» some interest in education
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