An Analysis of Three-Phase Rectifiers with Constant Voltage Loads

Predrag Pejović ${ }^{1}$, Johann W. Kolar ${ }^{2}$

${ }^{1}$ University of Belgrade, Faculty of Electrical Engineering
peja@etf.rs
${ }^{2}$ Swiss Federal Insitute of Technology, Zürich kolar@lem.ee.ethz.ch

The rectifier

The rectifier, properties

- simple
- inexnensive

The rectifier, properties

- simple
> inexpensive
- robust

The rectifier, properties

- simple
- inexpensive

The rectifier, properties

- simple
- inexpensive
- robust
-AC side parameters?
-AC side compliance with regulations?

The rectifier, properties

- simple
- inexpensive
- robust
- AC side parameters?
- AC side compliance with regulations?
- DC side parameters, dependence of $V_{\text {OUT }}$ on $I_{\text {OUT }}$?

The rectifier, properties

- simple
- inexpensive
- robust
- AC side parameters?
- AC side compliance with regulations?
- DC side parameters, dependence of Vout on I IOUT?

The rectifier, properties

- simple
- inexpensive
- robust
- AC side parameters?
- AC side compliance with regulations?
- DC side parameters, dependence of $V_{O U T}$ on $I_{O U T}$?

The rectifier, available information

```
* old rectifier, well known?
* V Calickan N I Porrear1t 'T.M. Jahms, and J. G. Kassakian.
"Analysis of three-phase rectifiers with constant-voltage loads,"
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50,
no. 9, pp. 1220-1226, Sep. 2003.
```


The rectifier, available information

- old rectifier, well known?

The rectifier, available information

- old rectifier, well known?
- V. Caliskan, D. J. Perreault, T. M. Jahns, and J. G. Kassakian, "Analysis of three-phase rectifiers with constant-voltage loads," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 9, pp. 1220-1226, Sep. 2003.

The rectifier, available information

- old rectifier, well known?
- V. Caliskan, D. J. Perreault, T. M. Jahns, and J. G. Kassakian, "Analysis of three-phase rectifiers with constant-voltage loads," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 9, pp. 1220-1226, Sep. 2003.
- P. Pejović, J. W. Kolar, "Exact analysis of three-phase rectifiers with constant voltage loads," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 55, no. 8, pp. 743-747, Aug. 2008.

The rectifier, available information

- old rectifier, well known?
- V. Caliskan, D. J. Perreault, T. M. Jahns, and J. G. Kassakian, "Analysis of three-phase rectifiers with constant-voltage loads," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 9, pp. 1220-1226, Sep. 2003.
- P. Pejović, J. W. Kolar, "Exact analysis of three-phase rectifiers with constant voltage loads," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 55, no. 8, pp. 743-747, Aug. 2008.
- continuous conduction mode (CCM) covered, three diodes conduct

The rectifier, available information

- old rectifier, well known?
- V. Caliskan, D. J. Perreault, T. M. Jahns, and J. G. Kassakian, "Analysis of three-phase rectifiers with constant-voltage loads," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 9, pp. 1220-1226, Sep. 2003.
- P. Pejović, J. W. Kolar, "Exact analysis of three-phase rectifiers with constant voltage loads," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 55, no. 8, pp. 743-747, Aug. 2008.
- continuous conduction mode (CCM) covered, three diodes conduct
- what about the discontinuous conduction mode(s) (DCM)?

The rectifier to be analyzed

Assumptions

```
> output ripple neglected, vOUT = V VOUT
* stummoturical undistorted thwne-mhase system
```

- resistance neglected
\qquad

Assumptions

- output ripple neglected, $v_{O U T}=V_{O U T}$

Assumptions

- output ripple neglected, $v_{O U T}=V_{O U T}$
- symmetrical undistorted three-phase system

Assumptions

- output ripple neglected, $v_{O U T}=V_{O U T}$
- symmetrical undistorted three-phase system
- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- resistance neglected
- line inductance can be included in the model

Assumptions

- output ripple neglected, $v_{O U T}=V_{O U T}$
- symmetrical undistorted three-phase system
- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- resistance neglected
- line inductance can be included in the model - ideal diodes assumed, V_{D} could be included

Assumptions

- output ripple neglected, $v_{O U T}=V_{O U T}$
- symmetrical undistorted three-phase system
- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- resistance neglected
- line inductance can be included in the model

Assumptions

- output ripple neglected, $v_{O U T}=V_{O U T}$
- symmetrical undistorted three-phase system
- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- resistance neglected
- line inductance can be included in the model
- ideal diodes assumed, V_{D} could be included

The rectifier model

Normalization

- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$ $\Rightarrow m=\frac{v}{T T}$

Normalization

$$
\text { - } v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right) \text {, for } k \in\{1,2,3\}
$$

Normalization

$$
\begin{aligned}
& v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right), \text { for } k \in\{1,2,3\} \\
& -m=\frac{v}{V_{m}}
\end{aligned}
$$

Normalization

- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- $m=\frac{v}{V_{m}}$
- $j=\frac{\omega L}{V_{m}} i$

Normalization

- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- $m=\frac{v}{V_{m}}$
- $j=\frac{\omega L}{V_{m}} i$
- $\varphi=\omega t$

Normalization

- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- $m=\frac{v}{V_{m}}$
- $j=\frac{\omega L}{V_{m}} i$
- $\varphi=\omega t$
- $L \frac{d i_{k}}{d t}=v_{k}-v_{X k}$

Normalization

- $v_{k}=V_{m} \cos \left(\omega t-(k-1) \frac{2 \pi}{3}\right)$, for $k \in\{1,2,3\}$
- $m=\frac{v}{V_{m}}$
- $j=\frac{\omega L}{V_{m}} i$
- $\varphi=\omega t$
- $L \frac{d i_{k}}{d t}=v_{k}-v_{X k}$
- $\frac{d j_{k}}{d \varphi}=m_{k}-m_{X k}$

An analysis of combinations of diode states

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off - 6 diodes, $2^{6}=64$ combinations

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off
- 6 diodes, $2^{6}=64$ combinations
- some combinations forbidden

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off
- 6 diodes, $2^{6}=64$ combinations
- some combinations forbidden
- $V_{\text {OUT }}>0$, diodes in pairs (D1, D2), (D3, D4), and (D5

D6) cannot conduct simultaneously

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off
- 6 diodes, $2^{6}=64$ combinations
- some combinations forbidden

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off
- 6 diodes, $2^{6}=64$ combinations
- some combinations forbidden
- $V_{\text {OUT }}>0$, diodes in pairs (D1, D2), (D3, D4), and (D5, D6) cannot conduct simultaneously
or $(0,0,+1)$ cannot occur, 14 of them

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off
- 6 diodes, $2^{6}=64$ combinations
- some combinations forbidden
- $V_{\text {OUT }}>0$, diodes in pairs (D1, D2), (D3, D4), and (D5, D6) cannot conduct simultaneously
- pair coded as $+1,0$, or -1 , reduction to $3^{3}=27$ states

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off
- 6 diodes, $2^{6}=64$ combinations
- some combinations forbidden
- $V_{\text {OUT }}>0$, diodes in pairs (D1, D2), (D3, D4), and (D5, D6) cannot conduct simultaneously
- pair coded as $+1,0$, or -1 , reduction to $3^{3}=27$ states
- $i_{1}+i_{2}+i_{3}=0$, combinations like $(+1,+1,+1),(-1,0,-1)$, or $(0,0,+1)$ cannot occur, 14 of them

An analysis of combinations of diode states

- ideal diodes assumed
- one bit sufficient to code diode state, either on or off
- 6 diodes, $2^{6}=64$ combinations
- some combinations forbidden
- $V_{\text {OUT }}>0$, diodes in pairs (D1, D2), (D3, D4), and (D5, D6) cannot conduct simultaneously
- pair coded as $+1,0$, or -1 , reduction to $3^{3}=27$ states
- $i_{1}+i_{2}+i_{3}=0$, combinations like $(+1,+1,+1),(-1,0,-1)$, or $(0,0,+1)$ cannot occur, 14 of them
- final reduction to 13 combinations (out of 64)

Combinations of diode states, listed

combination	phase leg state		
	1	2	3
0	0	0	0
1	+1	-1	0
2	+1	0	-1
3	-1	+1	0
4	0	+1	-1
5	-1	0	+1
6	0	-1	+1
7	+1	+1	-1
8	+1	-1	+1
9	-1	+1	+1
10	+1	-1	-1
11	-1	+1	-1
12	-1	-1	+1

Circuit description

- equations over inductor currents
 - enmations for the outnut terminal voltages

Circuit description

- equations over inductor currents
- equations for the output terminal voltages - boundary conditions, theoretically 6 of them

Circuit description

- equations over inductor currents
- equations for the output terminal voltages
- boundary conditions, theoretically 6 of them
- combination transition rules

Circuit description

- equations over inductor currents
- equations for the output terminal voltages
- boundary conditions, theoretically 6 of them
- combination transition rules

Circuit description

- equations over inductor currents
- equations for the output terminal voltages
- boundary conditions, theoretically 6 of them
- combination transition rules

Equations for state 0 , without conducting diodes

Equations for state 0 , without conducting diodes

- $j_{k}=j_{l}=j_{n}=0$

Equations for state 0, without conducting diodes

- $j_{k}=j_{l}=j_{n}=0$
- $m_{A}-m_{B}=M_{O U T}$

Equations for state 0, without conducting diodes

- $j_{k}=j_{l}=j_{n}=0$
- $m_{A}-m_{B}=M_{\text {OUT }}$
- $m_{k l}<M_{\text {OUT }}$

Equations for state 0, without conducting diodes

- $j_{k}=j_{l}=j_{n}=0$
- $m_{A}-m_{B}=M_{\text {OUT }}$
- $m_{k l}<M_{\text {OUT }}$
- the system order is zero

Equivalent circuit for two conducting diodes

Equations for two conducting diodes

$$
\begin{aligned}
& \text { state }(k)=+1, \text { state }(l)=-1, \text { state }(n)=0 \\
& \frac{d j_{k}}{d \varphi}=\frac{1}{2}\left(m_{k}-m_{l}-M_{O U T}\right), j_{l}=-j_{k}, j_{n}=0
\end{aligned}
$$

Equations for two conducting diodes

- $\operatorname{state}(k)=+1, \operatorname{state}(l)=-1, \operatorname{state}(n)=0$

Equations for two conducting diodes

- $\operatorname{state}(k)=+1, \operatorname{state}(l)=-1, \operatorname{state}(n)=0$
- $\frac{d j_{k}}{d \varphi}=\frac{1}{2}\left(m_{k}-m_{l}-M_{O U T}\right), j_{l}=-j_{k}, j_{n}=0$

Equations for two conducting diodes

- $\operatorname{state}(k)=+1, \operatorname{state}(l)=-1, \operatorname{state}(n)=0$
- $\frac{d j_{k}}{d \varphi}=\frac{1}{2}\left(m_{k}-m_{l}-M_{O U T}\right), j_{l}=-j_{k}, j_{n}=0$
- $m_{A}=\frac{1}{2}\left(M_{O U T}-m_{n}\right), m_{B}=\frac{1}{2}\left(M_{O U T}+m_{n}\right)$

Equations for two conducting diodes

- $\operatorname{state}(k)=+1, \operatorname{state}(l)=-1, \operatorname{state}(n)=0$
- $\frac{d j_{k}}{d \varphi}=\frac{1}{2}\left(m_{k}-m_{l}-M_{O U T}\right), j_{l}=-j_{k}, j_{n}=0$
- $m_{A}=\frac{1}{2}\left(M_{O U T}-m_{n}\right), m_{B}=\frac{1}{2}\left(M_{O U T}+m_{n}\right)$
- $j_{k}>0$, to combination 0 if violated

Equations for two conducting diodes

- $\operatorname{state}(k)=+1, \operatorname{state}(l)=-1, \operatorname{state}(n)=0$
- $\frac{d j_{k}}{d \varphi}=\frac{1}{2}\left(m_{k}-m_{l}-M_{O U T}\right), j_{l}=-j_{k}, j_{n}=0$
- $m_{A}=\frac{1}{2}\left(M_{O U T}-m_{n}\right), m_{B}=\frac{1}{2}\left(M_{O U T}+m_{n}\right)$
- $j_{k}>0$, to combination 0 if violated
- $m_{n}<\frac{1}{3} M_{\text {OUT }}$ leg n to state +1 if violated

Equations for two conducting diodes

- $\operatorname{state}(k)=+1, \operatorname{state}(l)=-1, \operatorname{state}(n)=0$
- $\frac{d j_{k}}{d \varphi}=\frac{1}{2}\left(m_{k}-m_{l}-M_{O U T}\right), j_{l}=-j_{k}, j_{n}=0$
- $m_{A}=\frac{1}{2}\left(M_{O U T}-m_{n}\right), m_{B}=\frac{1}{2}\left(M_{O U T}+m_{n}\right)$
- $j_{k}>0$, to combination 0 if violated
- $m_{n}<\frac{1}{3} M_{\text {OUT }}$ leg n to state +1 if violated
- $m_{n}>-\frac{1}{3} M_{\text {OUT }}$ leg n to state -1 if violated

Equations for two conducting diodes

- $\operatorname{state}(k)=+1, \operatorname{state}(l)=-1, \operatorname{state}(n)=0$
- $\frac{d j_{k}}{d \varphi}=\frac{1}{2}\left(m_{k}-m_{l}-M_{O U T}\right), j_{l}=-j_{k}, j_{n}=0$
- $m_{A}=\frac{1}{2}\left(M_{O U T}-m_{n}\right), m_{B}=\frac{1}{2}\left(M_{O U T}+m_{n}\right)$
- $j_{k}>0$, to combination 0 if violated
- $m_{n}<\frac{1}{3} M_{\text {OUT }}$ leg n to state +1 if violated
- $m_{n}>-\frac{1}{3} M_{\text {OUT }}$ leg n to state -1 if violated
- the circuit is of the first order

Equivalent circuit for three conducting diodes, two to the positive output terminal

Equations for three conducting diodes, two to the positive output terminal

Equations for three conducting diodes, two to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{1}{3} M_{O U T}$

Equations for three conducting diodes, two to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{1}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}-\frac{1}{3} M_{O U T}$

Equations for three conducting diodes, two to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{1}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}-\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$

Equations for three conducting diodes, two to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{1}{3} M_{\text {OUT }}$
- $\frac{d j_{l}}{d \varphi}=m_{l}-\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{1}{3} M_{O U T}, m_{B}=-\frac{2}{3} M_{\text {OUT }}$
- possible instantaneous combination transitions, additional incoualitics

Equations for three conducting diodes, two to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{1}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}-\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{1}{3} M_{\text {OUT }}, m_{B}=-\frac{2}{3} M_{\text {OUT }}$
- $j_{k}>0, j_{l}>0, j_{n}<0$

Equations for three conducting diodes, two to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{1}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}-\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{1}{3} M_{\text {OUT }}, m_{B}=-\frac{2}{3} M_{\text {OUT }}$
- $j_{k}>0, j_{l}>0, j_{n}<0$
- possible instantaneous combination transitions, additional inequalities

Equations for three conducting diodes, two to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{1}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}-\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{1}{3} M_{\text {OUT }}, m_{B}=-\frac{2}{3} M_{\text {OUT }}$
- $j_{k}>0, j_{l}>0, j_{n}<0$
- possible instantaneous combination transitions, additional inequalities
- the system is of the second order

Equivalent circuit for three conducting diodes, one to the positive output terminal

Equations for three conducting diodes, one to the positive output terminal

Equations for three conducting diodes, one to the positive output terminal

$$
\frac{d j_{k}}{d \varphi}=m_{k}-\frac{2}{3} M_{O U T}
$$

Equations for three conducting diodes, one to the positive output terminal

$$
\begin{aligned}
& -\frac{d j_{k}}{d \varphi}=m_{k}-\frac{2}{3} M_{O U T} \\
& -\frac{d j_{l}}{d \varphi}=m_{l}+\frac{1}{3} M_{O U T}
\end{aligned}
$$

Equations for three conducting diodes, one to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{2}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}+\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$

Equations for three conducting diodes, one to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{2}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}+\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{2}{3} M_{\text {OUT }}, m_{B}=-\frac{1}{3} M_{\text {OUT }}$
\rightarrow possible instantaneous combination transitions, additional manamitios

Equations for three conducting diodes, one to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{2}{3} M_{O U T}$
- $\frac{d j_{l}}{d \varphi}=m_{l}+\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{2}{3} M_{\text {OUT }}, m_{B}=-\frac{1}{3} M_{\text {OUT }}$
- $j_{k}>0, j_{l}<0, j_{n}<0$

Equations for three conducting diodes, one to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{2}{3} M_{\text {OUT }}$
- $\frac{d j_{l}}{d \varphi}=m_{l}+\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{2}{3} M_{\text {OUT }}, m_{B}=-\frac{1}{3} M_{\text {OUT }}$
- $j_{k}>0, j_{l}<0, j_{n}<0$
- possible instantaneous combination transitions, additional inequalities

Equations for three conducting diodes, one to the positive output terminal

- $\frac{d j_{k}}{d \varphi}=m_{k}-\frac{2}{3} M_{\text {OUT }}$
- $\frac{d j_{l}}{d \varphi}=m_{l}+\frac{1}{3} M_{O U T}$
- $j_{n}=-j_{k}-j_{l}$
- $m_{A}=\frac{2}{3} M_{\text {OUT }}, m_{B}=-\frac{1}{3} M_{\text {OUT }}$
- $j_{k}>0, j_{l}<0, j_{n}<0$
- possible instantaneous combination transitions, additional inequalities
- the system is of the second order

Modes
\rightarrow mode 0 , only combination 0

- mode 1 combinations with 0 and 2 conducting diodes mode 2 , combinations with 0,2 , and 3 conducting diodes - mode 3 combinatione with 2 and 3 aonduationg diodas

Modes

- mode 0 , only combination 0
- mode 1, combinations with 0 and 2 conducting diodes - mode 2 , combinations with 0,2 , and 3 conducting diodes

Modes

- mode 0 , only combination 0
- mode 1 , combinations with 0 and 2 conducting diodes
- mode 2, combinations with 0, 2, and 3 conducting diodes
- mode 3, combinations with 2 , and 3 conducting diodes

Modes

- mode 0 , only combination 0
- mode 1 , combinations with 0 and 2 conducting diodes
- mode 2 , combinations with 0,2 , and 3 conducting diodes
- mode 3, combinations with 2 , and 3 conducting diodes - mode 4 , only combinations with 3 conducting diodes, CCM

Modes

- mode 0 , only combination 0
- mode 1 , combinations with 0 and 2 conducting diodes
- mode 2 , combinations with 0,2 , and 3 conducting diodes
- mode 3 , combinations with 2 , and 3 conducting diodes

Modes

- mode 0 , only combination 0
- mode 1 , combinations with 0 and 2 conducting diodes
- mode 2 , combinations with 0,2 , and 3 conducting diodes
- mode 3 , combinations with 2 , and 3 conducting diodes
- mode 4 , only combinations with 3 conducting diodes, CCM

Dependence of the operating mode on $M_{O U T}$

Mode 1, waveforms of i_{1}, v_{1}, and $v_{X 1}, M_{O U T}=1.7$

Mode 2, waveforms of i_{1}, v_{1}, and $v_{X 1}, M_{O U T}=1.6475$

Mode 3, waveforms of i_{1}, v_{1}, and $v_{X 1}, M_{O U T}=1.5$

Mode 4 , waveforms of i_{1}, v_{1}, and $v_{X 1}, M_{O U T}=1$

Dependence of $M_{\text {OUT }}$ on $J_{\text {OUT }}$

Dependence of the rectifier power and apparent power on $M_{\text {OUT }}$

Dependence of the rectifier power factor and the displacement power factor on $M_{O U T}$.

Dependence of $P F_{X}$ and $D P F_{X}$ on $M_{O U T}$

Dependence of $T H D\left(v_{X k}\right)$ on $M_{O U T}$

Dependence of $T H D\left(i_{k}\right)$ on $M_{\text {OUT }}$

Conclusions 1

－numerical analysis of a three－phase voltage loaded rectifier
－analvsis nerformed on the eanation svstem level． normalization
ムロ〉4岛

Conclusions 1

- numerical analysis of a three-phase voltage loaded rectifier normalization
- insioht in the rectifier operation. identification of the operating modes

Conclusions 1

- numerical analysis of a three-phase voltage loaded rectifier
- analysis performed on the equation system level, normalization
- insight in the rectifier operation, identification of the operating modes
- combinations of dior states, combinatorial approach

Conclusions 1

- numerical analysis of a three-phase voltage loaded rectifier
- analysis performed on the equation system level, normalization
- insight in the rectifier operation, identification of the operating modes
- combinations of diode states, combinatorial approach out of $2^{6}=64$ combinations of diode states only 13 might occur

Conclusions 1

- numerical analysis of a three-phase voltage loaded rectifier
- analysis performed on the equation system level, normalization
- insight in the rectifier operation, identification of the operating modes
- combinations of diode states, combinatorial approach
- for all 13 circuit equations are derived

Conclusions 1

- numerical analysis of a three-phase voltage loaded rectifier
- analysis performed on the equation system level, normalization
- insight in the rectifier operation, identification of the operating modes
- combinations of diode states, combinatorial approach
- out of $2^{6}=64$ combinations of diode states only 13 might occur
- for all 13 circuit equations are derived

Conclusions 1

- numerical analysis of a three-phase voltage loaded rectifier
- analysis performed on the equation system level, normalization
- insight in the rectifier operation, identification of the operating modes
- combinations of diode states, combinatorial approach
- out of $2^{6}=64$ combinations of diode states only 13 might occur
- for all 13 circuit equations are derived

Conclusions 1

- numerical analysis of a three-phase voltage loaded rectifier
- analysis performed on the equation system level, normalization
- insight in the rectifier operation, identification of the operating modes
- combinations of diode states, combinatorial approach
- out of $2^{6}=64$ combinations of diode states only 13 might occur
- for all 13 circuit equations are derived
- circuit order might be zero, one, or two, depending on the diode state combination

Conclusions 2

```
* boundary inequalities are derived, combination transition
    rules
> instantaneous combination transitions
```


Conclusions 2

- boundary inequalities are derived, combination transition rules
> instantaneous combination transitions - modes of the circuit operation are defined

Conclusions 2

- boundary inequalities are derived, combination transition rules
- instantaneous combination transitions
- modes of the circuit operation are defined
- simulation, MOUT from 2 to 0 in steps of 0.0005

Conclusions 2

- boundary inequalities are derived, combination transition rules
- instantaneous combination transitions
- modes of the circuit operation are defined
- simulation, Mout from 2 to 0 in steps of 0.0005 - dependence of $M_{\text {OUT }}$ on $J_{\text {OUT }}$ is presented

Conclusions 2

- boundary inequalities are derived, combination transition rules
- instantaneous combination transitions
- modes of the circuit operation are defined
- simulation, $M_{\text {OUT }}$ from 2 to 0 in steps of 0.0005
- dependence of Mout on Jout is presented
- dependence on $M_{O U T}$ of $P, S, P F, P F_{X}, D P F, D P F_{X}$, $T H D\left(i_{k}\right), T H D\left(v_{X k}\right)$

Conclusions 2

- boundary inequalities are derived, combination transition rules
- instantaneous combination transitions
- modes of the circuit operation are defined
- simulation, $M_{\text {OUT }}$ from 2 to 0 in steps of 0.0005
- dependence of $M_{O U T}$ on $J_{O U T}$ is presented
- dependence on Mout of $P, S, P F, P F_{X}, D P F, D P F_{X}$, $T H D\left(i_{k}\right), T H D\left(v_{X k}\right)$

Conclusions 2

- boundary inequalities are derived, combination transition rules
- instantaneous combination transitions
- modes of the circuit operation are defined
- simulation, MOUT from 2 to 0 in steps of 0.0005
- dependence of $M_{O U T}$ on $J_{O U T}$ is presented
- dependence on $M_{O U T}$ of $P, S, P F, P F_{X}, D P F, D P F_{X}$, $T H D\left(i_{k}\right), T H D\left(v_{X k}\right)$

Conclusions 2

- boundary inequalities are derived, combination transition rules
- instantaneous combination transitions
- modes of the circuit operation are defined
- simulation, MOUT from 2 to 0 in steps of 0.0005
- dependence of $M_{O U T}$ on $J_{O U T}$ is presented
- dependence on $M_{O U T}$ of $P, S, P F, P F_{X}, D P F, D P F_{X}$, $T H D\left(i_{k}\right), T H D\left(v_{X k}\right)$
- obtained diagrams quick reference guide for the rectifier design

Conclusions 2

- boundary inequalities are derived, combination transition rules
- instantaneous combination transitions
- modes of the circuit operation are defined
- simulation, MOUT from 2 to 0 in steps of 0.0005
- dependence of $M_{O U T}$ on $J_{O U T}$ is presented
- dependence on $M_{O U T}$ of $P, S, P F, P F_{X}, D P F, D P F_{X}$, $T H D\left(i_{k}\right), T H D\left(v_{X k}\right)$
- obtained diagrams quick reference guide for the rectifier design
- some interest in education

