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The rectifier, properties

◮ simple
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◮ AC side parameters?

◮ AC side compliance with regulations?
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The rectifier to be analyzed
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Assumptions

◮ output ripple neglected, vOUT = VOUT

◮ symmetrical undistorted three-phase system

◮ vk = Vm cos

(

ωt− (k − 1)
2π

3

)

, for k ∈ {1, 2, 3}

◮ resistance neglected

◮ line inductance can be included in the model

◮ ideal diodes assumed, VD could be included
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The rectifier model
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Normalization
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An analysis of combinations of diode states

◮ ideal diodes assumed

◮ one bit sufficient to code diode state, either on or off

◮ 6 diodes, 26 = 64 combinations

◮ some combinations forbidden

◮ VOUT > 0, diodes in pairs (D1, D2), (D3, D4), and (D5,
D6) cannot conduct simultaneously

◮ pair coded as +1, 0, or −1, reduction to 33 = 27 states

◮ i1 + i2 + i3 = 0, combinations like (+1,+1,+1), (−1, 0,−1),
or (0, 0,+1) cannot occur, 14 of them

◮ final reduction to 13 combinations (out of 64)
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Combinations of diode states, listed

phase leg state

combination 1 2 3

0 0 0 0
1 +1 −1 0
2 +1 0 −1
3 −1 +1 0
4 0 +1 −1
5 −1 0 +1
6 0 −1 +1
7 +1 +1 −1
8 +1 −1 +1
9 −1 +1 +1
10 +1 −1 −1
11 −1 +1 −1
12 −1 −1 +1



Circuit description

◮ equations over inductor currents

◮ equations for the output terminal voltages

◮ boundary conditions, theoretically 6 of them

◮ combination transition rules
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Equations for state 0, without conducting diodes

◮ jk = jl = jn = 0

◮ mA −mB = MOUT

◮ mkl < MOUT

◮ the system order is zero
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Equivalent circuit for two conducting diodes
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Equations for two conducting diodes

◮ state(k) = +1, state(l) = −1, state(n) = 0

◮

djk

dϕ
=

1

2
(mk −ml −MOUT ), jl = −jk, jn = 0

◮ mA =
1

2
(MOUT −mn), mB =

1

2
(MOUT +mn)

◮ jk > 0, to combination 0 if violated

◮ mn <
1

3
MOUT leg n to state +1 if violated

◮ mn > −
1

3
MOUT leg n to state −1if violated

◮ the circuit is of the first order
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Equivalent circuit for three conducting diodes, two to the

positive output terminal
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Equations for three conducting diodes, two to the positive

output terminal

◮
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MOUT , mB = −
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3
MOUT

◮ jk > 0, jl > 0, jn < 0

◮ possible instantaneous combination transitions, additional
inequalities

◮ the system is of the second order
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Modes

◮ mode 0, only combination 0

◮ mode 1, combinations with 0 and 2 conducting diodes

◮ mode 2, combinations with 0, 2, and 3 conducting diodes

◮ mode 3, combinations with 2, and 3 conducting diodes

◮ mode 4, only combinations with 3 conducting diodes, CCM
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Dependence of the operating mode on MOUT
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Mode 1, waveforms of i1, v1, and vX1, MOUT = 1.7
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Mode 2, waveforms of i1, v1, and vX1, MOUT = 1.6475
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Mode 3, waveforms of i1, v1, and vX1, MOUT = 1.5
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Mode 4, waveforms of i1, v1, and vX1, MOUT = 1
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Dependence of MOUT on JOUT
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Dependence of the rectifier power and apparent power on

MOUT
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Dependence of the rectifier power factor and the

displacement power factor on MOUT .

0

0.2

0.4

0.6

0.8

1

1.2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

P
F
,
D
P
F

MOUT

PF

DPF



Dependence of PFX and DPFX on MOUT
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Dependence of THD(vXk) on MOUT
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Dependence of THD(ik) on MOUT
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Conclusions 1

◮ numerical analysis of a three-phase voltage loaded rectifier

◮ analysis performed on the equation system level,
normalization

◮ insight in the rectifier operation, identification of the
operating modes

◮ combinations of diode states, combinatorial approach

◮ out of 26 = 64 combinations of diode states only 13 might
occur

◮ for all 13 circuit equations are derived

◮ circuit order might be zero, one, or two, depending on the
diode state combination
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Conclusions 2

◮ boundary inequalities are derived, combination transition
rules

◮ instantaneous combination transitions

◮ modes of the circuit operation are defined

◮ simulation, MOUT from 2 to 0 in steps of 0.0005

◮ dependence of MOUT on JOUT is presented

◮ dependence on MOUT of P , S, PF , PFX , DPF , DPFX ,
THD(ik), THD(vXk)

◮ obtained diagrams quick reference guide for the rectifier
design

◮ some interest in education
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