Switching Current Injection Device

aim ...

- current injection devices inject to all three of the phases...
- but only one phase really needs injection!
- is there a way to inject only where needed?
- is there a way to get rid of the current injection device?
- something smaller, lighter, cheaper, ...

let's get back to basic current injection ...

as always, assume ...

$$
m_{1}=\cos \left(\omega_{0} t\right)
$$

$$
\begin{aligned}
m_{2} & =\cos \left(\omega_{0} t-\frac{2 \pi}{3}\right) \\
m_{3} & =\cos \left(\omega_{0} t-\frac{4 \pi}{3}\right)
\end{aligned}
$$

diodes ...

currents without injection

what do we need?

conclusion:

current injection is needed in the phase whose voltage is neither minimal neither maximal in the considered time point

let's do it!

how to operate the switches?

some Boole algebra ...

$$
\begin{aligned}
& s_{1}=\neg d_{1} \wedge \neg d_{2} \\
& s_{2}=\neg d_{3} \wedge \neg d_{4} \\
& s_{3}=\neg d_{5} \wedge \neg d_{6}
\end{aligned}
$$

and the voltages are defined ...

m_{A}, waveform

m_{A}, analytical

$$
m_{A}=\max \left(m_{1}, m_{2}, m_{3}\right)
$$

$$
\begin{gathered}
m_{A}=M_{A 0}+\sum_{k=1}^{\infty} M_{A, k} \cos \left(3 k \omega_{0} t\right) \\
M_{A 0}=\frac{3 \sqrt{3}}{2 \pi} \\
M_{A, k}=\frac{3 \sqrt{3}}{\pi} \frac{(-1)^{k+1}}{9 k^{2}-1}
\end{gathered}
$$

m_{A}, spectrum, real part

m_{B}, waveform

$$
m_{B}=\min \left(m_{1}, m_{2}, m_{3}\right)
$$

$$
\begin{gathered}
m_{B}=M_{B 0}+\sum_{k=1}^{\infty} M_{B, k} \cos \left(3 k \omega_{0} t\right) \\
M_{B 0}=-\frac{3 \sqrt{3}}{2 \pi} \\
M_{B, k}=\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

m_{B}, spectrum, real part

m_{C}, waveform, this is a new one..

m_{C}, analytical

$$
\begin{gathered}
m_{C}=-m_{A}-m_{B} \\
m_{C}=\sum_{k=1,3,5, \ldots}^{\infty} M_{C, k} \cos \left(3 k \omega_{0} t\right) \\
M_{C, k}=-\frac{6 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

this is a (sort of) new spectrum to deal with ...
and there is no DC component in it ...
m_{C}, spectrum, real part

since we are already here, $m_{A V}$, waveform

$m_{A V}$, analytical

$$
\begin{gathered}
m_{A V}=\frac{m_{A}+m_{B}}{2}=-\frac{m_{C}}{2} \\
m_{A V}=\sum_{k=1,3,5, \ldots}^{\infty} M_{A V, k} \cos \left(3 k \omega_{0} t\right) \\
M_{A V, k}=\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

$m_{A V}$, spectrum, real part

$m_{\text {OUT AC }}$, waveform

$$
\begin{gathered}
m_{\text {OUT AC }}=m_{\text {OUT }}-M_{\text {OUT }}=m_{A}-M_{A, 0}-m_{B}+M_{B, 0} \\
m_{\text {OUT } A C}=\sum_{k=2,4,6, \ldots}^{\infty} M_{\text {OUT } A C, k} \cos \left(3 k \omega_{0} t\right) \\
M_{\text {OUT AC }, k}=-\frac{6 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

$m_{O U T A C}$, spectrum, real part

we would like to have ...

$$
\begin{gathered}
j_{1}=\cos \left(\omega_{0} t\right) \\
j_{2}=\cos \left(\omega_{0} t-\frac{2 \pi}{3}\right) \\
j_{3}=\cos \left(\omega_{0} t-\frac{4 \pi}{3}\right)
\end{gathered}
$$

a note, again: normalized amplitude is 1 ; if actual amplitude is I_{m}, the normalization is

$$
j_{X} \triangleq \frac{i_{X}}{I_{m}}
$$

and there is a way to get it ...

analysis . . .

- regarding the inputs, diodes and switches perform useless function
- each phase observes R_{E}, which is perfect!
- which of the resistors is the hottest one?
- or better to ask, which one is the coldest?
- let's separate AC and DC, you already know the trick...
... the trick...

hint: $L=R^{2} C$, if ∞ is too big

voila!

analysis ...

- ... and we have the circuit!
- not a long mathematical derivation?
- actually, it's invented right now, while working on this presentation (April 15, 2012, 00:06:53)
- not the first experience of this kind, 1999, ...

something similar published in ...

Predrag Pejović

"A Novel Low Harmonic Three Phase Rectifier"

IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 49, no. 7, pp. 955-965, July 2002
after lots of trouble ...
although, the derivation presented here is much shorter, and the circuit is slightly different ...

currents . . .

$$
\begin{gathered}
j_{A}=m_{A} \\
j_{B}=-m_{B} \\
j_{C}=-m_{C}
\end{gathered}
$$

analytical description, spectra, waveforms, ...

$$
\begin{gathered}
j_{I A}=j_{A}-J_{O U T} \\
j_{I B}=J_{O U T}-j_{B} \\
J_{O U T}=\frac{3 \sqrt{3}}{2 \pi}
\end{gathered}
$$

power and efficiency ...

$$
\begin{gathered}
P_{I N}=\frac{3}{2} \\
P_{\text {OUT }}=M_{\text {OUT }} J_{\text {OUT }}=\frac{3 \sqrt{3}}{\pi} \times \frac{3 \sqrt{3}}{2 \pi}=\frac{27}{2 \pi^{2}} \\
P_{I N J}=P_{I N}-P_{\text {OUT }}=\frac{3 \pi^{2}-27}{2 \pi^{2}} \\
\eta=\frac{P_{\text {OUT }}}{P_{I N}}=\frac{9}{\pi^{2}} \approx 91.19 \%
\end{gathered}
$$

already familiar with the results?

remains to be done ...

- how hot each resistor is?
- other current injection networks?
- the third harmonic current injection?
- how to build the switching current injection device?
- in the meantime, some waveforms and spectra...
j_{A}, j_{B}, and j_{C}

j_{A}, analytical

$$
\begin{gathered}
j_{A}=\max \left(j_{1}, j_{2}, j_{3}\right) \\
j_{A}=J_{A 0}+\sum_{k=1}^{\infty} J_{A, k} \cos \left(3 k \omega_{0} t\right) \\
J_{A 0}=\frac{3 \sqrt{3}}{2 \pi}=J_{O U T} \\
J_{A, k}=\frac{3 \sqrt{3}}{\pi} \frac{(-1)^{k+1}}{9 k^{2}-1}
\end{gathered}
$$

the same as m_{A}
j_{A}, spectrum, real part

j_{B}, analytical

$$
\begin{gathered}
j_{B}=-\min \left(j_{1}, j_{2}, j_{3}\right) \\
j_{B}=J_{B 0}+\sum_{k=1}^{\infty} J_{B, k} \cos \left(3 k \omega_{0} t\right) \\
J_{B 0}=\frac{3 \sqrt{3}}{2 \pi}=J_{O U T} \\
J_{B, k}=-\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

the same as $-m_{B}$

j_{B}, spectrum, real part

j_{C}, analytical

$$
\begin{gathered}
j_{C}=j_{A}-j_{B} \\
j_{C}=\sum_{k=1,3,5, \ldots}^{\infty} J_{C, k} \cos \left(3 k \omega_{0} t\right) \\
J_{C, k}=\frac{6 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

proportional to $m_{A V}$ and $-m_{C}$; going to be important

j_{C}, spectrum, real part

$j_{I A}, j_{I B}$, and j_{C}

currents ...

$$
\begin{gathered}
j_{I A}=j_{A}-J_{O U T} \\
j_{I B}=J_{O U T}-j_{B} \\
J_{O U T}=\frac{3 \sqrt{3}}{2 \pi}
\end{gathered}
$$

analytical description, spectra, ...

$j_{I A}$, analytical

$$
\begin{gathered}
j_{I A}=\max \left(j_{1}, j_{2}, j_{3}\right)-\frac{3 \sqrt{3}}{\pi} \\
j_{I A}=\sum_{k=1}^{\infty} J_{A, k} \cos \left(3 k \omega_{0} t\right) \\
J_{I A, k}=\frac{3 \sqrt{3}}{\pi} \frac{(-1)^{k+1}}{9 k^{2}-1}
\end{gathered}
$$

$j_{I A}$, spectrum, real part

$j_{I B}$, analytical

$$
\begin{gathered}
j_{I B}=\frac{3 \sqrt{3}}{2 \pi}-\min \left(j_{1}, j_{2}, j_{3}\right) \\
j_{I B}=\sum_{k=1}^{\infty} J_{B, k} \cos \left(3 k \omega_{0} t\right) \\
J_{I B, k}=\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

$j_{I B}$, spectrum, real part

detour: $j_{R 1}, j_{R 2}$, and $j_{R 3}$

$j_{R 1}$, spectrum, real part

$j_{S 1}, j_{S 2}$, and $j_{S 3}$

$j_{S 1}$, spectrum, real part

j_{1}, j_{2}, and j_{3}

how j_{1} is obtained?

how j_{1} is obtained: spectral approach

how j_{2} is obtained?

how j_{3} is obtained?

$j_{\text {odd }}$ and $j_{\text {even }}$

matter of convenience:

$$
\begin{aligned}
& j_{I A}=j_{\text {odd }}+j_{\text {even }} \\
& j_{I B}=j_{\text {odd }}-j_{\text {even }} \\
& j_{\text {odd }}=\frac{j_{I A}+j_{I B}}{2} \\
& j_{\text {even }}=\frac{j_{I A}-j_{I B}}{2}
\end{aligned}
$$

$j_{\text {odd }}$, spectrum

$$
\begin{gathered}
j_{\text {odd }}=\sum_{k=1,3,5 \ldots}^{\infty} J_{o d d, k} \cos \left(3 k \omega_{0} t\right) \\
J_{\text {odd }, k}=\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

$j_{\text {odd }}$, spectrum, real part

$j_{\text {even }}$, spectrum

$$
\begin{gathered}
j_{\text {even }}=\sum_{k=2,4,6 \ldots}^{\infty} J_{\text {even }, k} \cos \left(3 k \omega_{0} t\right) \\
J_{\text {even }, k}=-\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

proportional to $m_{O U T ~ A C}$; going to be important

$j_{\text {even }}$, spectrum, real part

so, we have SCIN $\# 0$

SCIN \#0, heat \ldots

wxMaxima ... I won't be able to complete this job manually, it's too boring ...

$$
\begin{gathered}
J_{I A R M S}=J_{I B R M S}=\frac{\sqrt{4 \pi^{2}+3 \pi \sqrt{3}-54}}{2 \pi \sqrt{2}} \\
P_{\text {vertical } R_{E}}=\left(J_{I A R M S}\right)^{2}=\frac{4 \pi^{2}+3 \pi \sqrt{3}-54}{8 \pi^{2}} \approx 0.0228
\end{gathered}
$$

vertically placed R_{E} resistors are not so hot

$$
\begin{gathered}
J_{C R M S}=\sqrt{\frac{2 \pi-3 \sqrt{3}}{4 \pi}} \\
P_{\text {horizontal } R_{E}}=\left(J_{C R M S}\right)^{2}=\frac{2 \pi-3 \sqrt{3}}{4 \pi} \approx 0.0865
\end{gathered}
$$

horizontally placed R_{E} is much hotter, almost 4 times; why $4 \times$?

a few words about SCIN \#0

- transformer not required
- too many resistors
- one resistor takes the most of the power

some relations ...

$$
\begin{gathered}
\frac{m_{A V}}{j_{o d d}}=1 \\
\frac{m_{C}}{j_{o d d}}=-2 \\
\frac{m_{\text {OUT } A C}}{j_{\text {even }}}=2
\end{gathered}
$$

to be used while creating new current injection networks ...

SCIN \#1, separatism

R_{1} and R_{2}

$$
\begin{gathered}
R_{1}=\frac{m_{A V}-m_{C}}{2 j_{\text {odd }}} R_{E}=\frac{3}{2} R_{E} \\
R_{2}=\frac{m_{\text {OUT } A C}}{j_{\text {even }}}=2 R_{E}
\end{gathered}
$$

and now you know why "some relations" were needed for

some power accounting, again ...

$$
\begin{gathered}
J_{o d d R M S}=\frac{\sqrt{2 \pi-3 \sqrt{3}}}{4 \sqrt{\pi}} \\
P_{1}=\frac{3}{2}\left(J_{o d d ~ R M S}\right)^{2}=\frac{3}{8}\left(2-\frac{3 \sqrt{3}}{\pi}\right) \approx 0.1298 \\
J_{\text {even } R M S}=\frac{\sqrt{3}}{4 \pi} \sqrt{2 \pi^{2}+3 \pi \sqrt{3}-36} \\
P_{2}=\frac{3\left(2 \pi^{2}+3 \pi \sqrt{3}-36\right)}{8 \pi^{2}} \approx 0.0024
\end{gathered}
$$

dissipation is dominant on R_{1}

an idea makes a new idea ...

- power on R_{2} is small...
- let's get rid of R_{2} !
- result: the same as the $3^{\text {rd }}$ harmonic CIN $\# 3$ for $Q=0$, $T H D \approx 4 \%$
- could we get $Q \neq 0$?
- definitely!
- do we need it?
- well, maybe for passive resistance emulation, to be talked about later

SCIN $\# 2$, the $3^{\text {rd }}$ harmonic one

SCIN \#2, parameters

$$
\begin{gathered}
3 \omega_{0}=\frac{1}{\sqrt{L C}} \\
j_{C}=\frac{1}{2} \cos \left(3 \omega_{0} t\right) \\
M_{A V, 1}-M_{C, 1}=\frac{9 \sqrt{3}}{8 \pi} \\
R=\frac{9 \sqrt{3}}{4 \pi} \frac{V_{m}}{I_{O U T}}
\end{gathered}
$$

- $R \quad 9 \times \uparrow$
- $i_{R} 3 \times \downarrow$
- $v_{R} 3 \times \uparrow$
- $p_{R}=v_{R} i_{R}$ remains the same, no way to save any power

renormalization

- input currents not sinusoidal any more
- convenient to use $I_{\text {base }}=I_{O U T}$, instead of $I_{\text {base }}=I_{m}$
- mutual relation?
- $I_{\text {OUT }}=\frac{3 \sqrt{3}}{2 \pi} I_{m} \approx 0.82699 I_{m}$, but only when the input currents are sinusoidal

j_{A}, j_{B}, and j_{C}, the $3^{\text {rd }}$ harmonic injection

j_{A}, spectrum, real part, the $3^{\text {rd }}$ harmonic injection

j_{B}, spectrum, real part, the $3^{\text {rd }}$ harmonic injection

j_{C}, spectrum, real part, the $3^{\text {rd }}$ harmonic injection

$j_{I A}, j_{I B}$, and j_{C}, the $3^{\text {rd }}$ harmonic injection

$j_{I A}$, spectrum, real part, the $3^{\text {rd }}$ harmonic injection

$j_{I B}$, spectrum, real part, the $3^{\text {rd }}$ harmonic injection

$j_{R 1}, j_{R 2}$, and $j_{R 3}$, the $3^{\text {rd }}$ harmonic injection

$j_{R 1}$, spectrum, real part, the $3^{\text {rd }}$ harmonic injection

$j_{S 1}, j_{S 2}$, and $j_{S 3}$, the $3^{\text {rd }}$ harmonic injection

$j_{S 1}$, spectrum, real part, the $3^{\text {rd }}$ harmonic injection

j_{1}, j_{2}, and j_{3}, the $3^{\text {rd }}$ harmonic injection

how j_{1} is obtained, the $3^{\text {rd }}$ harmonic injection

how j_{1} is obtained, the $3^{\text {rd }}$ harmonic injection

how j_{2} is obtained, the $3^{\text {rd }}$ harmonic injection

how j_{3} is obtained, the $3^{\text {rd }}$ harmonic injection

a note about RMSs

$$
\begin{gathered}
J_{A, 0}=J_{B, 0}=1 \\
J_{A R M S}=J_{B R M S}=\sqrt{\frac{33}{32}} \approx 1.0155
\end{gathered}
$$

much better than for magnetic current injection devices (where the increase was about 13%)

a note about bidirectional switches ...

- turned out to be easier than expected
- control problems, interaction with the diode bridge
- interphase shorts should not be allowed to occur ...
- primarily in the diode bridge!

conclusions

- switching current injection device
- injection only where needed
- bidirectional switches required
- control of the switches, switching at $2 f_{0} \ldots$
- three current injection networks proposed, although there are many more
- the optimal and the third harmonic current injection
- "dominant" resistor suitable for resistance emulation
- three times lower currents in comparison to magnetic current injection devices
- lower RMS of the diode bridge load currents ...

"future work"

- how to restore the power taken by the current injection network?

