## The Optimal Current Injection

let's get back to the beginning . . .

and we would like to have ...

$$
\begin{gathered}
j_{1}=\cos \left(\omega_{0} t\right) \\
j_{2}=\cos \left(\omega_{0} t-\frac{2 \pi}{3}\right) \\
j_{3}=\cos \left(\omega_{0} t-\frac{4 \pi}{3}\right)
\end{gathered}
$$

a small note: normalized amplitude is 1 ; if real amplitude is $I_{m}$, the normalization is

$$
j_{X} \triangleq \frac{i_{X}}{I_{m}}
$$

let's introduce current injection in an open-minded way

is there a way to improve the $T H D$ further?
at this point we can get $T H D=\sqrt{\frac{32 \pi^{2}}{315}-1} \approx 5.12 \%$
any better?
we have ...

$$
\begin{gathered}
m_{1}=\cos \left(\omega_{0} t\right) \\
m_{2}=\cos \left(\omega_{0} t-\frac{2 \pi}{3}\right) \\
m_{3}=\cos \left(\omega_{0} t-\frac{4 \pi}{3}\right)
\end{gathered}
$$

what we can get?

$$
\left[\begin{array}{c}
j_{1} \\
j_{2} \\
j_{3}
\end{array}\right]=\left[\begin{array}{c}
d_{1}-d_{2} \\
d_{3}-d_{4} \\
d_{5}-d_{6}
\end{array}\right]\left[i_{O U T}\right]
$$

linear dependence:

$$
\begin{aligned}
& \qquad j_{1}+j_{2}+j_{3}=0 \\
& \text { two degrees of freedom, } j_{3}=-j_{1}-j_{2} \\
& \text { some other properties: }
\end{aligned}
$$

$$
d_{1}+d_{3}+d_{5}=1 \quad \text { and } \quad d_{2}+d_{4}+d_{6}=1
$$

no way to get rid of the gaps
some equations ...

$$
\begin{gathered}
i_{R 1}=d_{1} i_{A}-d_{2} i_{B} \\
i_{R 2}=d_{3} i_{A}-d_{4} i_{B} \\
i_{R 3}=d_{5} i_{A}-d_{6} i_{B} \\
i_{1}=i_{R 1}-i_{X} \\
i_{2}=i_{R 2}-i_{X} \\
i_{3}=i_{R 3}-i_{X}
\end{gathered}
$$

$$
\begin{gathered}
i_{Y}=i_{A}-i_{B} \\
i_{X}=\frac{1}{3} i_{Y}=\frac{1}{3}\left(i_{A}-i_{B}\right)
\end{gathered}
$$

$$
\begin{aligned}
& i_{1}=d_{1} i_{A}-d_{2} i_{B}-i_{X}=\left(d_{1}-\frac{1}{3}\right) i_{A}+\left(\frac{1}{3}-d_{2}\right) i_{B} \\
& i_{2}=d_{3} i_{A}-d_{4} i_{B}-i_{X}=\left(d_{3}-\frac{1}{3}\right) i_{A}+\left(\frac{1}{3}-d_{4}\right) i_{B} \\
& i_{3}=d_{5} i_{A}-d_{6} i_{B}-i_{X}=\left(d_{5}-\frac{1}{3}\right) i_{A}+\left(\frac{1}{3}-d_{6}\right) i_{B}
\end{aligned}
$$

$$
\left[\begin{array}{c}
j_{1} \\
j_{2} \\
j_{3}
\end{array}\right]=\left[\begin{array}{ll}
d_{1}-\frac{1}{3} & \frac{1}{3}-d_{2} \\
d_{3}-\frac{1}{3} & \frac{1}{3}-d_{4} \\
d_{5}-\frac{1}{3} & \frac{1}{3}-d_{6}
\end{array}\right]\left[\begin{array}{c}
j_{A} \\
j_{B}
\end{array}\right]
$$

linear dependence, $j_{1}+j_{2}+j_{3}=0$
equations consistent, third row is linearly dependent ...
reduction to $2 \times 2$

$$
\left[\begin{array}{c}
j_{1} \\
j_{2}
\end{array}\right]=\left[\begin{array}{ll}
d_{1}-\frac{1}{3} & \frac{1}{3}-d_{2} \\
d_{3}-\frac{1}{3} & \frac{1}{3}-d_{4}
\end{array}\right]\left[\begin{array}{c}
j_{A} \\
j_{B}
\end{array}\right]
$$

is it possible to solve for $j_{A}$ and $j_{B}$ for "any" choice of $j_{1}$ and $j_{2}$ ?

$$
\begin{gathered}
D \triangleq\left|\begin{array}{rr}
d_{1}-\frac{1}{3} & \frac{1}{3}-d_{2} \\
d_{3}-\frac{1}{3} & \frac{1}{3}-d_{4}
\end{array}\right| \\
D=\frac{1}{3}\left(d_{1}-d_{2}+\left(3 d_{2}-1\right) d_{3}+\left(1-3 d_{1}\right) d_{4}\right)
\end{gathered}
$$

let's solve it ...
wxMaxima ...

$$
\begin{aligned}
j_{A} & =-\frac{\left(3 d_{2}-1\right) j_{2}+\left(1-3 d_{4}\right) j_{1}}{\left(3 d_{1}-1\right) d_{4}+\left(1-3 d_{2}\right) d_{3}+d_{2}-d_{1}} \\
j_{B} & =-\frac{\left(3 d_{1}-1\right) j_{2}+\left(1-3 d_{3}\right) j_{1}}{\left(3 d_{1}-1\right) d_{4}+\left(1-3 d_{2}\right) d_{3}+d_{2}-d_{1}}
\end{aligned}
$$

$j_{A}$ and $j_{B}$ as segment-to-segment linear combinations of $j_{1}$ and $j_{2}$
$j_{A}$ and $j_{B}$, comparison to $3^{\text {rd }}$ harmonic current injection

$D\left(\omega_{0} t\right)$

let's show it: $j_{A}$ and $j_{B}$; on the DCM boundary


$j_{A}$ and $j_{B}$, spectra, analytical
cos was on purpose, to get rid of $\Im$ wherever possible

$$
\begin{gathered}
j_{A}=J_{A, 0}+\sum_{k=1}^{\infty} J_{A, k} \cos \left(3 k \omega_{0} t\right) \\
j_{B}=J_{B, 0}+\sum_{k=1}^{\infty} J_{B, k} \cos \left(3 k \omega_{0} t\right) \\
J_{A, 0}=J_{B, 0}=\frac{3 \sqrt{3}}{2 \pi} \\
J_{A, k}=\frac{3 \sqrt{3}}{\pi} \frac{1-2(-1)^{k}}{9 k^{2}-1} \quad \text { for } \quad k \in \mathbb{N} \\
J_{B, k}=\frac{3 \sqrt{3}}{\pi} \frac{(-1)^{k}-2}{9 k^{2}-1} \quad \text { for } \quad k \in \mathbb{N}
\end{gathered}
$$


$j_{B}$, spectrum, real part

separation: injection part

$$
J_{\text {OUT }}=J_{A, 0}=J_{B, 0}=\frac{3 \sqrt{3}}{2 \pi}
$$

$J_{\text {OUT }}$ is not 1 any more!!! new normalization of currents:

$$
\begin{gathered}
j_{X} \triangleq \frac{i_{X}}{I_{m}} \\
j_{I A}=j_{A}-J_{O U T} \\
j_{I B}=J_{O U T}-j_{B} \\
j_{Y}=j_{I A}+j_{I B}
\end{gathered}
$$

comparison to the $3^{\text {rd }}$ harmonic current injection

$$
\begin{aligned}
& \Delta \eta=\frac{32}{35}-\frac{9}{\pi^{2}} \\
& \Delta \eta \approx-0.24 \%
\end{aligned}
$$

[^0]
separation: $I_{\text {OUT }}$

$P_{\text {OUT }}, P_{I N}, \eta$
since we are already here, around $J_{O U T}, \ldots$
$$
M_{\text {OUT }}=\frac{3 \sqrt{3}}{\pi}
$$
\[

$$
\begin{gathered}
P_{\text {OUT }}=M_{\text {OUT }} J_{\text {OUT }}=\frac{27}{2 \pi^{2}} \\
P_{\text {IN }}=\frac{3}{2} \\
P_{\text {INJ }}=P_{\text {IN }}-P_{\text {OUT }}=\frac{3 \pi^{2}-27}{2 \pi^{2}} \\
\eta=\frac{P_{\text {OUT }}}{P_{\text {IN }}}=\frac{9}{\pi^{2}} \approx 91.19 \%
\end{gathered}
$$
\]

back to $j_{I A}$ and $j_{I B}$, waveforms


$j_{I A}$ and $j_{I B}$, comparison to $3^{\text {rd }}$ harmonic current injection


$j_{I A}$ and $j_{I B}$, spectra, parity of $k$
for $k$ odd, $k=2 n-1, n \in \mathbb{N}$

$$
J_{I A, k}=J_{I B, k}=\frac{9 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
$$

for $k$ even, $k=2 n, n \in \mathbb{N}$

$$
J_{I A, k}=-J_{I B, k}=-\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
$$

$j_{I A}$, spectrum, real part

separation, again: $j_{\text {odd }}$ and $j_{\text {even }}$

$$
\begin{aligned}
& j_{I A}=j_{o d d}+j_{\text {even }} \\
& j_{I B}=j_{o d d}-j_{\text {even }}
\end{aligned}
$$

$$
\begin{aligned}
& j_{\text {odd }} \triangleq \frac{9 \sqrt{3}}{\pi} \sum_{k=1,3,5 \ldots}^{\infty} \frac{1}{9 k^{2}-1} \cos \left(3 k \omega_{0} t\right) \\
& j_{\text {even }} \triangleq-\frac{3 \sqrt{3}}{\pi} \sum_{k=2,4,6 \ldots}^{\infty} \frac{1}{9 k^{2}-1} \cos \left(3 k \omega_{0} t\right)
\end{aligned}
$$

$j_{I A}$ and $j_{I B}$, spectra, analytical

$$
\begin{gathered}
j_{I A}=\sum_{k=1}^{\infty} J_{I A, k} \cos \left(3 k \omega_{0} t\right) \\
j_{I B}=\sum_{k=1}^{\infty} J_{I B, k} \cos \left(3 k \omega_{0} t\right) \\
J_{I A, k}=\frac{3 \sqrt{3}}{\pi} \frac{1-2(-1)^{k}}{9 k^{2}-1} \quad \text { for } \quad k \in \mathbb{N} \\
J_{I B, k}=\frac{3 \sqrt{3}}{\pi} \frac{2-(-1)^{k}}{9 k^{2}-1} \quad \text { for } \quad k \in \mathbb{N}
\end{gathered}
$$

$j_{I A}$ and $j_{I B}$, spectra, real part

$j_{I B}$, spectrum, real part

physical interpretation and visualization

reduction ..

how to draw $j_{\text {odd }}$ and $j_{\text {even }}$ ?
forget about Fourier, linear algebra does the job:

$$
\begin{aligned}
j_{\text {odd }} & =\frac{1}{2}\left(j_{I A}+j_{I B}\right) \\
j_{\text {even }} & =\frac{1}{2}\left(j_{I A}-j_{I B}\right)
\end{aligned}
$$

can't resist, just a hint, $m_{A V}, m_{\text {OUT } A C}$

$j_{\text {odd }}$, spectrum, real part


- "position and hold"
- we've gone too far
- put the parallel in sequence, remember the problem?
- we have to walk another line
- that historically was in parallel to this one
- but now, we have to put this presentation in sequence
- remember the "reduction", we gonna need it
$j_{\text {odd }}$ and $j_{\text {even }}$, waveforms


$j_{\text {odd }}$ and $j_{\text {even }}$, spectra, real part

$j_{\text {even }}$, spectrum, real part

$j_{Y}$ and $j_{X}$ $j_{Y}$ and $j_{X}$, waveforms

$$
\begin{gathered}
j_{Y}=j_{I A}+j_{I B}=2 j_{\text {odd }} \\
j_{X}=\frac{1}{3} j_{Y}=\frac{2}{3} j_{\text {odd }}
\end{gathered}
$$

they do not have anything in common with $j_{\text {even }}$
$j_{Y}$ and $j_{X}$, spectra, real part

$j_{X}$, spectrum, real part

$m_{A V}$ and $m_{\text {OUT AC }}$, waveforms, detour, again



$j_{Y}$, spectrum, real part

finally, time to relate voltages and currents

$m_{A V}$, spectrum, analytical

$$
\begin{gathered}
m_{A V} \triangleq \frac{m_{A}+m_{B}}{2} \\
m_{A V}=\sum_{k=1,3,5 \ldots}^{\infty} M_{A V, k} \cos \left(3 k \omega_{0} t\right) \\
M_{A V, k}=\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$


$m_{\text {OUT } A C}$, spectrum, real part

odd, time domain relation ...

even, time domain relation ...


$$
\begin{gathered}
m_{\text {OUT } A C} \triangleq m_{\text {OUT }}-M_{\text {OUT }} \\
m_{\text {OUT }, A C}=\sum_{k=2,4,6 \ldots}^{\infty} M_{\text {OUT }, k} \cos \left(3 k \omega_{0} t\right) \\
M_{\text {OUT }, k}=-\frac{6 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1}
\end{gathered}
$$

spectral relations, odd

$$
\begin{gathered}
J_{o d d, k}=\frac{9 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1} \\
M_{A V, k}=\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1} \\
\frac{M_{A V, k}}{J_{o d d, k}}=\frac{1}{3}
\end{gathered}
$$

spectral relations, even

$$
\begin{gathered}
J_{\text {even }, k}=-\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1} \\
M_{\text {OUT }, k}=-\frac{6 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1} \\
\frac{M_{\text {OUT }, k}}{J_{\text {even }, k}}=2
\end{gathered}
$$

remember the "reduction"?


$$
R_{\text {even }}=\frac{v_{O U T ~ A C}}{i_{\text {even }}}=\frac{V_{m}}{I_{m}} \frac{m_{O U T ~ A C}}{j_{\text {even }}}=2 \frac{V_{m}}{I_{m}}
$$

let's introduce

$$
R_{E} \triangleq \frac{V_{m}}{I_{m}}
$$

as the resistance emulated at the rectifier input

$$
R_{\text {even }}=2 R_{E} \quad \text { or } \quad \rho_{\text {even }}=2
$$

$R_{\text {odd }}$

$$
R_{o d d}=\frac{v_{A V}}{i_{Y}}=\frac{V_{m}}{I_{m}} \frac{m_{A V}}{j_{Y}}=\frac{V_{m}}{I_{m}} \frac{m_{A V}}{2 j_{o d d}}=\frac{1}{6} \frac{V_{m}}{I_{m}}
$$

$$
R_{o d d}=\frac{1}{6} R_{E} \quad \text { or } \quad \rho_{o d d}=\frac{1}{6}
$$

relation to CIN $\# 3, Q=0$

CIN \#3:

$$
R=\frac{\sqrt{3}}{4 \pi} \frac{V_{m}}{I_{O U T}}
$$

in the optimal current injection:

$$
I_{O U T}=\frac{3 \sqrt{3}}{2 \pi} I_{m}
$$

and $R$ would be

$$
R=\frac{\sqrt{3}}{4 \pi} \frac{2 \pi}{3 \sqrt{3}} \frac{V_{m}}{I_{m}}=\frac{1}{6} \frac{V_{m}}{I_{m}}=R_{o d d}
$$

except for the $i_{\text {even }}$ path, they are the same!
and we have the rectifier!

power on $R_{\text {even }}$ ?
not a big deal (with wxMaxima, though):

$$
\begin{gathered}
J_{o d d, R M S}=\sqrt{\frac{18 \pi-27 \sqrt{3}}{16 \pi}} \\
P_{o d d}=\frac{1}{6}\left(2 J_{o d d, R M S}\right)^{2}=\frac{6 \pi-9 \sqrt{3}}{8 \pi} \\
\frac{P_{o d d}}{P_{O U T}}=\frac{\pi(6 \pi-9 \sqrt{3})}{108} \approx 9.49 \% \\
\frac{P_{o d d}}{P_{I N}}=\frac{6 \pi-9 \sqrt{3}}{12 \pi} \approx 8.65 \%
\end{gathered}
$$

$$
\begin{gathered}
J_{\text {even, } R M S}=\frac{\sqrt{3 \pi(2 \pi+3 \sqrt{3})-108}}{4 \pi} \\
P_{\text {even }}=2\left(J_{\text {even, } R M S}\right)^{2}=\frac{3\left(2 \pi^{2}+3 \pi \sqrt{3}-36\right)}{8 \pi^{2}} \\
\frac{P_{\text {even }}}{P_{\text {OUT }}}=\frac{2 \pi^{2}+3 \pi \sqrt{3}-36}{36} \approx 0.18 \% \\
\frac{P_{\text {even }}}{P_{I N}}=\frac{2 \pi^{2}+3 \pi \sqrt{3}-36}{4 \pi^{2}} \approx 0.16 \%
\end{gathered}
$$

- new normalization of currents introduced, over $I_{m}$
- resonance constraint avoided, tuned circuits not required
- operation at the DCM boundary, soft switching of diodes
- notches absent from the input voltages
- finite capacitance, ...
- $R_{\text {even }}$ can compensate for the load type:

1. resistor as a load: omit $R_{\text {even }}$
2. constant power load: half $R_{\text {even }}$

- omitting $R_{\text {even }}$ reduces to CIN $\# 3$ with $Q=0, T H D \approx 4 \%$
- some minor issues: the resistance distribution parameter, $a$
$v_{1}$ and $i_{1}$, experimental

$v_{2}$ and $i_{2}$, experimental

$v_{3}$ and $i_{3}$, experimental


Predrag Pejović, Žarko Janda
"Three Phase Rectifiers that Apply Optimal Current Injection"

IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 1, pp. 163-173, January 2002
and rejected for IEEE Transactions on Industry Applications...
a motivating factor for the choice? fair overpage policies ..
largely unnoticed ...
$v_{1}$ and $i_{1}$, experimental, spectra

$v_{2}$ and $i_{2}$, experimental, spectra

$v_{3}$ and $i_{3}$, experimental, spectra

input, experimental results, $\# 1 \ldots$
input, experimental results, $\# 2 \ldots$

| $k$ | $I_{k R M S}[\mathrm{~A}]$ | $V_{k R M S}[\mathrm{~V}]$ | $S[\mathrm{VA}]$ | $P[\mathrm{~W}]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 7.80 | 91.00 | 709.53 | 708.76 |
| 2 | 7.86 | 91.26 | 717.21 | 716.62 |
| 3 | 7.89 | 93.64 | 738.87 | 738.24 |

$i_{O U T}$ and $v_{O U T}$, experimental

output, experimental results

$$
I_{O U T}=9.04 \mathrm{~A}
$$

$$
V_{\text {OUT }}=214.77 \mathrm{~V}
$$

$$
P_{\text {OUT }}=1941.50 \mathrm{~W}
$$

$\eta=89.73 \%$
fits pretty good!!!
$v_{2}$, experimental


| $k$ | $P F$ | $T H D\left(i_{k}\right)[\%]$ | $T H D\left(v_{k}\right)[\%]$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.9989 | 2.82 | 3.14 |
| 2 | 0.9992 | 2.73 | 2.74 |
| 3 | 0.9991 | 2.80 | 2.61 |

$i_{\text {OUT }}$ and $v_{\text {OUT }}$, experimental, spectra

$v_{1}$, experimental

$v_{3}$, experimental

$v_{A}$ and $i_{A}$, experimental

$v_{A}$ and $i_{I A}$, experimental

$v_{A V}$ and $i_{Y}$, experimental

$i_{X 1}$, experimental

$v_{B}$ and $i_{B}$, experimental

$v_{B}$ and $i_{I B}$, experimental

$i_{Y}$, experimental

$i_{X 2}$, experimental

$i_{X 3}$, experimental

$i_{R 2}$, experimental

$i_{R 1}$, experimental

$i_{R 3}$, experimental

"future work"

1. there is no way to improve the $T H D$ further.
2. is there a simple way to restore the power taken by the current injection network?
3. let's be "open": is there a way to get rid of the current injection device?

[^0]:    negligible decrease; this is not a decision-making argument

