Introduction

- three-phase diode bridge rectifier -

what is this all about?

input voltages

$$
\begin{gathered}
v_{1}=V_{m} \cos \left(\omega_{0} t\right) \\
v_{2}=V_{m} \cos \left(\omega_{0} t-\frac{2 \pi}{3}\right) \\
v_{3}=V_{m} \cos \left(\omega_{0} t-\frac{4 \pi}{3}\right) \\
v_{k}=V_{m} \cos \left(\omega_{0} t-(k-1) \frac{2 \pi}{3}\right), \quad k \in\{1,2,3\}
\end{gathered}
$$

input voltages, waveforms

normalization of voltages

$$
m_{X} \triangleq \frac{v_{X}}{V_{m}}
$$

$$
m_{1}=\cos \left(\omega_{0} t\right)
$$

$$
\begin{aligned}
& m_{2}=\cos \left(\omega_{0} t-\frac{2 \pi}{3}\right) \\
& m_{3}=\cos \left(\omega_{0} t-\frac{4 \pi}{3}\right)
\end{aligned}
$$

voltages?

$$
v_{k}=V_{m} \cos \left(\omega_{0} t-(k-1) \frac{2 \pi}{3}\right), \quad k \in\{\mathbf{1}, 2,3\}
$$

voltages?

$$
v_{k}=V_{m} \cos \left(\omega_{0} t-(k-1) \frac{2 \pi}{3}\right), \quad k \in\{1, \mathbf{2}, 3\}
$$

voltages?

$$
v_{k}=V_{m} \cos \left(\omega_{0} t-(k-1) \frac{2 \pi}{3}\right), \quad k \in\{1,2, \mathbf{3}\}
$$

voltages?

$$
v_{k}=V_{m} \cos \left(\omega_{0} t-(k-1) \frac{2 \pi}{3}\right), \quad k \in\{\mathbf{1}, 2,3\}
$$

voltages?

$$
v_{k}=V_{m} \cos \left(\omega_{0} t-(k-1) \frac{2 \pi}{3}\right), \quad k \in\{1, \mathbf{2}, 3\}
$$

voltages?

$$
v_{k}=V_{m} \cos \left(\omega_{0} t-(k-1) \frac{2 \pi}{3}\right), \quad k \in\{1,2, \mathbf{3}\}
$$

v_{1}, spectrum

v_{2}, spectrum

v_{3}, spectrum

voltages, quantitative characterization

k	$V_{k R M S}$	$T H D\left(v_{k}\right)$
1	103.83 V	3.34%
2	103.70 V	2.77%
3	105.12 V	3.06%

all graphs and data PyLab processed

$T H D$

And what is THD?

$$
T H D \triangleq \frac{\sqrt{\sum_{k=2}^{\infty} I_{k R M S}^{2}}}{I_{1 R M S}}
$$

Parseval's identity:

$$
I_{R M S}^{2}=\sum_{k=1}^{\infty} I_{k R M S}^{2} \quad \text { assumed } \quad I_{0}=0
$$

results in

$$
T H D \triangleq \frac{\sqrt{I_{R M S}^{2}-I_{1 R M S}^{2}}}{I_{1 R M S}}
$$

simple, but important computational issues, finite sums ...

normalization of currents and time

$$
j_{X} \triangleq \frac{i_{X}}{I_{O U T}}
$$

unless otherwise noted

$$
\varphi \triangleq \omega_{0} t
$$

good: physical dimensions lost, reduced number of variables, results are generalized, core of the problem focused
bad: physical dimensions lost, perfect double-check tool is lost
how does it work? part 1: theory

one of the three: D1, D3, D5

v_{A}, analytical

$$
m_{A}=\max \left(m_{1}, m_{2}, m_{3}\right)
$$

v_{A}, spectrum

$$
m_{A}=\frac{3 \sqrt{3}}{2 \pi}\left(1+2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{9 k^{2}-1} \cos \left(3 k \omega_{0} t\right)\right)
$$

what about v_{B} ?

one of the three, again: D2, D4, D6

v_{B}, analytical

$$
m_{B}=\min \left(m_{1}, m_{2}, m_{3}\right)
$$

v_{B}, spectrum

$$
m_{B}=\frac{3 \sqrt{3}}{2 \pi}\left(-1+2 \sum_{k=1}^{\infty} \frac{1}{9 k^{2}-1} \cos \left(3 k \omega_{0} t\right)\right)
$$

the output voltage, $v_{O U T}$

$m_{O U T}=m_{A}-m_{B}=\max \left(m_{1}, m_{2}, m_{3}\right)-\min \left(m_{1}, m_{2}, m_{3}\right)$

$v_{O U T}$, spectrum

$$
m_{O U T}=\frac{3 \sqrt{3}}{\pi}\left(1-2 \sum_{k=1}^{\infty} \frac{1}{36 k^{2}-1} \cos \left(6 k \omega_{0} t\right)\right)
$$

currents?

$$
\begin{aligned}
& i_{1}(t)=\left(d_{1}(t)-d_{2}(t)\right) I_{O U T} \\
& i_{2}(t)=\left(d_{3}(t)-d_{4}(t)\right) I_{O U T} \\
& i_{3}(t)=\left(d_{5}(t)-d_{6}(t)\right) I_{O U T}
\end{aligned}
$$

states of the diodes

the input currents

consider i_{1}

spectra of the input currents

spectra of the input currents, analytical

$$
\begin{gathered}
j_{1}(t)=\sum_{k=1}^{+\infty} J_{1 C, k} \cos \left(k \omega_{0} t\right) \\
J_{1 C, k}=\frac{2 \sqrt{3}}{\pi}\left\{\begin{aligned}
-\frac{1}{k}, & k=6 n-1 \\
\frac{1}{k}, & k=6 n+1 \\
0, & \text { otherwise }
\end{aligned}\right.
\end{gathered}
$$

double-check:

$$
P_{I N}=\frac{3}{2} \times 1 \times \frac{2 \sqrt{3}}{\pi}=\frac{3 \sqrt{3}}{\pi}=P_{O U T}
$$

numerical verification, Gibbs phenomenon

THD of the input currents

$$
\begin{gathered}
I_{k R M S}=\sqrt{\frac{2}{3}} I_{O U T} \\
I_{k R M S, 1}=\frac{\sqrt{6}}{\pi} I_{O U T} \\
T H D \triangleq \frac{\sqrt{I_{k R M S}^{2}-I_{k R M S, 1}^{2}}}{I_{k R M S, 1}} \\
T H D=\sqrt{\frac{\pi^{2}}{9}-1} \approx 31.08 \%
\end{gathered}
$$

Parseval's identity based formula turned out to be useful

voltages and currents

some more parameters

$$
X_{R M S} \triangleq \sqrt{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(x\left(\omega_{0} t\right)\right)^{2} d\left(\omega_{0} t\right)}, \quad x \in\{i, v\}
$$

already used for the THD

$$
\begin{gathered}
S \triangleq I_{R M S} V_{R M S} \\
P \triangleq \frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(\omega_{0} t\right) i\left(\omega_{0} t\right) d\left(\omega_{0} t\right) \\
P F \triangleq \frac{P}{S}
\end{gathered}
$$

$$
D P F \triangleq \cos \phi_{1}
$$

and if the voltages are sinusoidal ...

$$
\begin{gathered}
S=V_{R M S} I_{R M S} \\
P=V_{R M S} I_{1, R M S} \cos \phi_{1} \\
P F=\frac{P}{S}=\frac{I_{1, R M S}}{I_{R M S}} \cos \phi_{1}=\frac{I_{1, R M S}}{I_{R M S}} D P F \\
D P F=\cos \varphi_{1} \\
T H D=\frac{\sqrt{I_{R M S}^{2}-I_{1, R M S}^{2}}}{I_{1, R M S}}=\sqrt{\left(\frac{I_{R M S}}{I_{1, R M S}}\right)^{2}-1}
\end{gathered}
$$

i.e. everything depends on the current waveform and its position

some more parameters, plain rectifier

$$
\begin{gathered}
I_{k R M S}=\sqrt{\frac{2}{3}} I_{O U T} \quad V_{k R M S}=\frac{1}{\sqrt{2}} V_{m} \\
S=3 \times \sqrt{\frac{2}{3}} I_{O U T} \times \frac{1}{\sqrt{2}} V_{m}=\sqrt{3} V_{m} I_{O U T} \\
P=V_{O U T} I_{O U T}=\frac{3 \sqrt{3}}{\pi} V_{m} I_{O U T} \\
P F=\frac{3}{\pi} \approx 95.5 \% \\
D P F=1
\end{gathered}
$$

actually, not so bad; $T H D$ is the problem
back to the rectifier:
how does it work? part 2: experiment

input, at $I_{O U T}=3 \mathrm{~A}$

input, at $I_{O U T}=3 \mathrm{~A}$

input, at $I_{\text {OUT }}=3 \mathrm{~A}$

input, at $I_{\text {OUT }}=3 \mathrm{~A}$

input, at $I_{O U T}=6 \mathrm{~A}$

input, at $I_{\text {OUT }}=6 \mathrm{~A}$

input, at $I_{\text {OUT }}=6 \mathrm{~A}$

input, at $I_{\text {OUT }}=6 \mathrm{~A}$

input, at $I_{O U T}=9 \mathrm{~A}$

input, at $I_{O U T}=9 \mathrm{~A}$

input, at $I_{\text {OUT }}=9 \mathrm{~A}$

input, at $I_{\text {OUT }}=9 \mathrm{~A}$

output, at $I_{\text {OUT }}=3 \mathrm{~A}$

output, at $I_{\text {OUT }}=3 \mathrm{~A}$

output, at $I_{\text {OUT }}=6 \mathrm{~A}$

output, at $I_{\text {OUT }}=6 \mathrm{~A}$

output, at $I_{\text {OUT }}=9 \mathrm{~A}$

output, at $I_{\text {OUT }}=9 \mathrm{~A}$

in quantitative terms, input, 1st

$I_{\text {OUT }}$	k	$I_{k R M S}[\mathrm{~A}]$	$V_{k R M S}[\mathrm{~V}]$	$S_{k}[\mathrm{VA}]$	$P_{k}[\mathrm{~W}]$
0 A	1	-	101.29	-	-
	2	-	100.63	-	-
	3	-	102.40	-	-
3 A	1	2.60	98.23	255.01	245.16
	2	2.61	97.73	254.60	244.37
	3	2.63	98.82	259.71	251.00
6 A	1	5.12	94.87	485.41	466.87
	2	5.12	94.34	482.67	464.25
	3	5.13	96.80	496.95	477.08
9 A	1	7.59	92.38	701.53	673.86
	2	7.64	91.95	702.47	675.16
	3	7.66	94.04	720.00	692.30

in quantitative terms, input, 2nd

$I_{\text {OUT }}$	k	$P F_{k}$	$T H D\left(i_{k}\right)[\%]$	$T H D\left(v_{k}\right)[\%]$
0 A	1	-	-	4.33
	2	-	-	3.75
	3	-	-	4.75
3 A	1	0.9614	30.50	4.17
	2	0.9598	29.57	3.86
	3	0.9665	29.97	5.38
6 A	1	0.9618	29.26	3.87
	2	0.9618	28.37	3.66
	3	0.9600	28.31	3.87
9 A	1	0.9605	28.00	4.01
	2	0.9611	27.21	3.92
	3	0.9615	27.06	4.19

in quantitative terms, output

$I_{\text {OUT }}[\mathrm{A}]$	$V_{\text {OUT }}[\mathrm{V}]$	$P_{\text {OUT }}[\mathrm{W}]$	$P_{\text {IN }}[\mathrm{W}]$	$\eta[\%]$
0.00	239.79	1.07	-0.81	-
3.21	229.51	736.72	740.53	99.49
6.27	221.23	1386.56	1408.20	98.46
9.41	212.91	2004.12	2041.32	98.18

overall impressions

- pretty good rectifier
- simple, robust, cheap
- good symmetry
- excellent DPF
- acceptable $P F$
- poor THD (but not that poor)
- up to this point:
- diode bridge rectifier analyzed
- measurement tools developed
- is there a way to do something with the $T H D$?

fruitless effort \#1: shaping the output current

fruitless effort \#1: waveforms

fruitless effort \#1: quantitative

- $T H D=30.79 \%$
- not a big deal of an improvement
- only one degree of freedom, $i_{O U T}$
- shaping i_{1}, i_{2}, and i_{3} is the goal
- two degrees of freedom needed, since $i_{1}+i_{2}+i_{3}=0$
fruitless effort \#2: additional deegree of freedom

fruitless effort \#2: waveforms

fruitless effort \#2: neutral current

fruitless effort \#2: quantitative

- $T H D=24.76 \%$
- somewhat better
- all of i_{1}, i_{2}, and i_{3} cannot be fixed by programming i_{A} and i_{B} in this circuit
- example: $i_{1}=i_{A}, i_{2}=-i_{B}$, no way to fix i_{3}
- gaps in the input currents in both of the "patches"
- the additional degree of freedom is taken by i_{N}
- which is a disaster of itself
- we would need another degree of freedom to fix i_{N}
- but this is a wrong approach, i_{N} was not an issue before

conclusions

- three-phase diode bridge rectifier analyzed
- quantitative measures of rectifier performance introduced
- measurement tools developed
- theoretical predictions related to experiments
- gaps in the input currents identified as a problem
- how to fill in the gaps?
- an answer is current injection ...

