
The Discontinuous Conduction Mode



what happens if R is omitted?
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what really happens?

I in the case VA, 1 and VB, 1 remain the same as in the CCM,
the amplitude of iY won’t be limited

I something, though, limits the amplitude; try and see . . .
I let’s look at the circuit and search for the answers:

1. what limits the amplitude of iY ?
2. is it safe to operate in this mode?
3. is there any use of this operating mode?



v1, i1, IOUT ≈ 3A



v1, i1, IOUT ≈ 3A, spectra



v1, IOUT ≈ 3A



v2, i2, IOUT ≈ 3A



v2, i2, IOUT ≈ 3A, spectra



v2, IOUT ≈ 3A



v3, i3, IOUT ≈ 3A



v3, i3, IOUT ≈ 3A, spectra



v3, IOUT ≈ 3A



v1, i1, IOUT ≈ 6A



v1, i1, IOUT ≈ 6A, spectra



v1, IOUT ≈ 6A



v2, i2, IOUT ≈ 6A



v2, i2, IOUT ≈ 6A, spectra



v2, IOUT ≈ 6A



v3, i3, IOUT ≈ 6A



v3, i3, IOUT ≈ 6A, spectra



v3, IOUT ≈ 6A



v1, i1, IOUT ≈ 9A



v1, i1, IOUT ≈ 9A, spectra



v1, IOUT ≈ 9A



v2, i2, IOUT ≈ 9A



v2, i2, IOUT ≈ 9A, spectra



v2, IOUT ≈ 9A



v3, i3, IOUT ≈ 9A



v3, i3, IOUT ≈ 9A, spectra



v3, IOUT ≈ 9A



vOUT , iOUT , IOUT ≈ 3A



vOUT , iOUT , IOUT ≈ 3A, spectra



vOUT , iOUT , IOUT ≈ 6A



vOUT , iOUT , IOUT ≈ 6A, spectra



vOUT , iOUT , IOUT ≈ 9A



vOUT , iOUT , IOUT ≈ 9A, spectra



does it worth?

IOUT [A] k Ik RMS [A] Vk RMS [V] S [VA] P [W]

≈ 3A 1 2.90 99.78 289.66 282.36
2 2.91 99.47 289.58 282.42
3 2.88 100.12 288.67 281.42

≈ 6A 1 5.66 95.89 542.29 533.10
2 5.66 95.75 541.53 532.38
3 5.65 97.01 548.57 539.83

≈ 9A 1 8.38 91.67 767.90 752.36
2 8.48 92.14 781.43 767.26
3 8.42 94.72 797.43 785.45



does it worth?

IOUT [A] k PF THD(ik) [%] THD(vk) [%]

≈ 3A 1 0.9748 17.76 4.22
2 0.9753 17.86 3.91
3 0.9749 17.74 4.14

≈ 6A 1 0.9830 14.69 3.76
2 0.9831 14.19 4.21
3 0.9841 14.19 3.80

≈ 9A 1 0.9798 11.98 5.47
2 0.9819 11.53 5.47
3 0.9850 11.69 4.32



does it worth?

IOUT [A] VOUT [V] POUT [W] PIN [W] η [%]

3.08 253.32 781.38 846.21 92.34
6.06 232.91 1410.35 1605.31 87.86
9.41 216.86 2041.09 2305.07 88.55

really low η; quite unexpected! is this a mistake?



user’s point of view . . . and a conclusion

I the input currents are not so good, but better than without
injection

I THD is in the range from 10% to 20%

I absolutely no notches in the input voltages
I spikes in the output voltage, rich with harmonics
I the spikes decrease with increases of the output current
I the spikes increase the output voltage average, VOUT
I there are some losses in the system, unexpected?
I the efficiency is much lower than expected!
I at 9A the rectifier operates close to the CCM
I spikes are the answer! what causes them?
I let’s take a closer look . . .



vA, iA, IOUT ≈ 3A



vB, iB, IOUT ≈ 3A



vA, iA, IOUT ≈ 6A



vB, iB, IOUT ≈ 6A



vA, iA, IOUT ≈ 9A



vB, iB, IOUT ≈ 9A



let’s start from the end . . .

Q: what the end is?
A: CCM-DCM boundary, close to IOUT = 9A in our case

at that point:

iY = 2 IOUT cos (3ω0t)

normalize, . . .

jY = JY m cos (3ω0t) = 2 cos (3ω0t)

JY m = 2 instead of 3
2 , which would be optimal



efficiency at the boundary . . .
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experimental results make sense now?



j1 at the boundary (and not just there) . . .



at the boundary . . .

to get to the boundary
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wxMaxima will be heavily needed from here . . .
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THD and the PF at the boundary

THD =
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2187
− 1 ≈ 10.43%

PF =
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≈ 0.9946

not that bad . . .

but, the efficiency is bad!



and what if Q = 0?



parameters for Q = 0?

this boundary requires a different value of ρ . . .

ρ =
max (mAV )

max (jY )
=

1

4
× 1

2
=

1

8

at the boundary . . .

JRMS =

√
10

9
− 2√

3π

J1m =

√
3

π
+

2

3

J1RMS =

√
3

π
√
2
+

√
2

3



η, THD, and PF at the boundary, Q = 0

η =
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3
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THD and PF okay, but η is not . . .

better THD and PF are achieved in CCM with better η, this
mode does not make any sense in practice . . .



partial conclusions . . .

I there is some interest in the DCM, due to the relatively
acceptable THD

I the boundary between the CCM and the DCM suffers from
poor efficiency, not of practical interest

I we should analyze the DCM somewhere away from the
boundary . . .



case Q→∞, R→ 0

I Q = R0/R, R0 =
√
L/C

I let’s analyze large R0 and low R case . . . not just huge Q
I in that case jY ≈ 2 cos (3ω0t)

I and the spikes limit the amplitude of jY . . .
I . . . since there is no other cause
I let’s model the spikes somehow . . .
I maybe with Dirac impulses?
I that’s why I stressed the “flat” spectrum
I let’s take a look . . .



vA and vB, IOUT ≈ 3A



vA and vB, IOUT ≈ 3A



vA and vB, IOUT ≈ 6A



vA and vB, IOUT ≈ 6A



vA and vB, IOUT ≈ 9A



vA and vB, IOUT ≈ 9A



definitely, the spikes . . .

definitely, the spikes are the answer for the DCM:

I the spikes reduce the 3rd harmonic (at 3ω0) in mA and mB

I the spikes depend on the output current
I the spikes are disappearing as we are getting close to the

CCM
I the spikes introduce new harmonics, needed to distort iY
I the spikes have flat-looking spectrum . . .
I . . . which makes them suitable to model with Dirac δ

impulses!
I and I personally like δ impulses and Dirac’s approach . . .
I P. A. M. Dirac: “The aim of science is to make difficult

things understandable in a simpler way; the aim of poetry
is to state simple things in an incomprehensible way.”



definitions of mA0 and mB0, no spikes

mA0 = max (m1, m2, m3)

mB0 = min (m1, m2, m3)

the same as mA and mB before . . .

thus, they have the same spectra, . . .



let’s model the spikes . . .

mA = mA0 +MX

+∞∑
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)

where VX is yet to be determined . . .

a word about physical dimension of δ impulses . . .



the model of spikes, DSP version . . .



a DSP note . . .

I when it comes to δ impulses, the DSP approach becomes
extremely error prone

I be VERY careful in forming the spectra, a tiny error could
destroy the results

I this is not a story, this is an experience . . .
I much worse than Gibbs phenomenon . . .
I the higher the level of discontinuity — the worse
I with δ impulses spectral leakage is a problem, since the is a

lot to leak



the spectra, mA . . .

mA = max (m1, m2, m3) +MX
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the spectra, mB . . .

mB = min (m1, m2, m3)−MX
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since we are already here, mOUT , the spectrum . . .

mOUT = mA −mB

mOUT =MOUT, 0 +

∞∑
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let’s use the spectra . . .

to push jY . . .
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and we get MX . . .
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a double check . . .

at ρ = 0:
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√
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MOUT variation within +12.5% . . .



dependence of VOUT on IOUT
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denormalize . . .
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the output impedance is 2R, . . .



a word about efficiency . . .
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η passes the double check at the CCM-DCM boundary . . .



δ conclusions . . .

I the spikes are modelled by δ impulses
I prediction of the output voltage obtained, VOUT . . .
I prediction of the output impedance, 2R . . .
I prediction of the efficiency obtained . . .
I however, this is just an approximation . . .
I . . . although experimentally verifiable
I how good the approximation is?
I is there a better model?
I avoid exact solution, it is not available in a closed form . . .
I . . . like it was in the CCM
I how about “simulation”?
I but not just in a form of a cheap experiment . . .



simplify the circuit . . .

I originally, there are 6 diodes
I deep theory says there are 26 = 64 states
I fortunately, we do not care about all of them . . .
I in the CCM only 6 states occur
I in the DCM there are more than 6 . . .
I first, let’s reduce the problem as much as we can . . .
I but not more than that . . .



an equivalent circuit to study the DCM
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some voltages defined . . .

as defined earlier . . . just rename . . .

vA0 = max (v1, v2, v3)

vB0 = min (v1, v2, v3)

and another voltage waveform which would be needed . . .

vAV 0 =
vA0 + vB0

2



about DA and DB

I DA and vA0 represent v1, v2, v3, and D1, D3, D5
I DB and vB0 represent v1, v2, v3, and D2, D4, D6
I DA and DB model the DCM
I from 6 diodes to 2
I from 26 = 64 states to 22 = 4

I and out of these four, one is irrelevant . . .
I an improvement . . . helps us understand . . .
I only 3 states to take care of!
I but that’s not that only . . .



how to get the currents?

in the same way as before:

i1 = d1 iA − d2 iB −
1

3
iY

i2 = d3 iA − d4 iB −
1

3
iY

i3 = d5 iA − d6 iB −
1

3
iY

where dn functions are as defined earlier, n ∈ {1, . . . 6}



iY is really important . . .

iA = IOUT +
1

2
iY

iB = IOUT −
1

2
iY

. . .

i1 = (d1 − d2) IOUT +
3 (d1 + d2)− 2

6
iY

i2 = (d3 − d4) IOUT +
3 (d3 + d4)− 2

6
iY

i3 = (d5 − d6) IOUT +
3 (d5 + d6)− 2

6
iY



reduced number of states . . .

I instead of 26 = 64 we deal with 4 states now
I states, I mean diode state combinations
I and it is not 4, but 3 for IOUT > 0

I which is why the equivalent circuit has been introduced . . .
I we need iY . . .
I vA and vB would also be useful . . .
I let’s find iY , vA, and vB in each of the states . . .



back to the circuit . . .
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and some circuit theory . . .

I at most, for DA and DB on, the circuit is of the third order
I when a diode goes off, algebraic degeneration over iL = iY

occurs, since iY = ±2 IOUT in such a case . . .
I . . . but that’s not a big problem; the capacitors are . . .



and some circuit theory, capacitors . . .

I the capacitors share the same current, iY /2
I thus, their voltages differ for a constant . . .
I the circuit (with DA and DB on) has three poles, one of

them in s = 0

I the capacitors have the same AC components in their
voltages

I but the DC components are different!
I it is not a big deal to find the DC components . . . well . . .
I especially since VCA = −VCB due to the symmetry . . .
I but to find the AC component is a problem . . .
I which we are going to solve!



after some dirty job . . .

let’s introduce

vC =
vCA + vCB

2

which turns out to be the AC component of the voltages across
CA and CB, since the DC components are the opposite . . .

it can be shown that the resistance distribution parameter does
not have any influence . . .

the circuit exposes algebraic degeneration if a diode is off, as
already stated . . .

a lot of effort to solve in a sort of elegant way . . .



state 0, DA is on, DB is on

equations:

L
diY
dt

= −R iY − vC + vAV 0

C
dvC
dt

= iY

conditions:

−2 IOUT ≤ iY if violated switch to state −1
iY ≤ 2 IOUT if violated switch to state +1



state −1, DA is off, DB is on

iY = −2 IOUT

C
dvC
dt

= −2 IOUT

condition:

vC > vAV 0 + 2RIOUT if violated switch to state 0



state +1, DA is on, DB is off

iY = 2 IOUT

C
dvC
dt

= 2 IOUT

condition:

vC < vAV 0 − 2RIOUT if violated switch to state 0



vA and vB

state DA DB vA vB
0 on on vA0 vB0

−1 off on vA = vADCM vB0

+1 on off vA0 vB = vBDCM

vADCM = −vB0 − 4RIOUT + 2 vC

vBDCM = −vA0 + 4RIOUT + 2 vC



new normalization, motivation

I existing normalization of currents, with Ibase = IOUT is
inadequate . . .

I the problem is in the dependence of ρ on IOUT ,
ρ = RIOUT /Vm

I R remains constant, while IOUT varies
I it is inconvenient to consider variations of IOUT as

variations of ρ, but not that big of a deal . . .
I we need a solid foundation for Ibase
I besides, R0 ,

√
L/C plays a significant role now . . .

I it’s time to renew normalization . . .



new normalization

Vbase = Vm

Rbase , R0 =

√
L

C

Ibase =
Vm
R0

JOUT =
IOUT
Ibase

=
R0 IOUT
Vm

ρ =
R

R0
=

1

Q



the resonance parameter, r

ωR ,
1√
LC

r ,
ωR
3ω0

in resonance r = 1, the CIN should be designed to meet this,
this is the resonance constraint



state 0, DA is on, DB is on, normalized

equations:

djY
dϕ

= 3 r (−ρ jY −mC +mAV 0)

dmC

dϕ
= 3 r jY

conditions:

−2 JOUT ≤ jY if violated switch to state −1
jY ≤ 2 JOUT if violated switch to state +1



state −1, DA is on, DB is off, normalized

jY = −2 JOUT

dmC

dϕ
= −6 r JOUT

condition:

mC > mAV 0 + 2 ρ JOUT if violated switch to state 0



state +1, DA is off, DB is on, normalized

jY = 2 JOUT

dmC

dϕ
= 6 r JOUT

condition:

mC < mAV 0 − 2 ρ JOUT if violated switch to state 0



mA and mB

state DA DB mA mB

0 on on mA0 mB0

−1 off on mA = mADCM mB0

+1 on off mA0 mB = mBDCM

mADCM = −mB0 − 4 ρ JOUT + 2mC

mBDCM = −mA0 + 4 ρ JOUT + 2mC



simulation is an easy task?

I all the equations derived . . .
I just to solve them . . .
I equations piecewise-linear, nonhomogeneous . . .
I trapezoidal rule to integrate . . .
I simple discretization . . .
I but the steady state is required!
I which is a problem of itself!
I and remains to be a problem . . .
I a new steady state acceleration method had to be derived

to solve the model in a reasonable time . . .
I the original intention was to include the method in this

presentation . . .



the steady state acceleration method published in . . .

Marija Stojsavljević, Predrag Pejović

“An Extrapolation Method for Accelerated Convergence
to Steady State Solution of Power Electronics Circuits”

Power Conversion and Intelligent Motion, PCIM Europe 2005,
pp. 574–578, Nuremberg, Germany, June 2005



THD versus JOUT , the simulation result



MOUT versus JOUT , the simulation result



η versus JOUT , the simulation result



MOUT max versus JOUT , the simulation result



THD versus r, the simulation result



after the simulation . . .

I simulation may be used even to draw fairly general
conclusions

I but this requires analytical preparation and normalization
I obtained diagrams should be denormalized to apply for a

specific circuit
I agreement with δ impulse approach?
I disagreement only at low IOUT
I which was expected . . . after we got the results



published in . . .

Predrag Božović, Predrag Pejović

“Current Injection Based Low Harmonic Three Phase
Diode Bridge Rectifier Operating in Discontinuous
Conduction Mode”

IEE Proceedings Electric Power Applications,
vol. 152, no. 2, pp. 199–208, March 2005

without any problem!



after the DCM . . .

I finally, there is some understanding of the DCM . . .
I but is there any use of it?
I at first, it seems pretty useless . . .
I but do we study only the things to be applied at the very

moment?
I actually, we do!
I but there is resistance emulation . . .
I where these concepts turned out to be useful
I although this was not an original idea
I and this is our next topic . . .


