Conclusions

closing time \ldots

- ▶ about curiosity . . .
- \blacktriangleright that does not provide a result immediately . . .
- \blacktriangleright but maybe someday . . . or maybe never . . .
- \blacktriangleright since the science begins at the crossing . . .
- \blacktriangleright where the right way is not known . . .
- \blacktriangleright and you are curious to find it . . .
- ▶ not always knowing why ...
- \blacktriangleright about accepted and rejected papers . . .
- \blacktriangleright and application of ideas developed somewhere else . . .
- ▶ by someone else . . .
- ▶ and that straight roads are not that much fun ...
- but sinusoidal are!

1. Introduction

- three-phase diode bridge rectifiers
- methods to measure their parameters
- using off-line post-processing
- models developed
- and compared to experiments
- \blacktriangleright to gain confidence
- ▶ and to get acquainted
- normalization introduced
- spectra derived
- and the problem identified

3. Current Injection Devices

- \blacktriangleright a story about cutting a current in three equal pieces
- \blacktriangleright by a magnetic device
- about VA-rating
- ▶ about some magnetic circuits
- $\blacktriangleright\,$ and about stray flux
- ▶ that causes sometimes parasitic inductance

closing time ...

- seminar about current injection methods in three-phase rectifiers
- \blacktriangleright however, primarily a research experience . . .
- ▶ about evolution of ideas . . .
- ▶ about inducing ideas . . .
- \blacktriangleright about experience that unexpected happens . . .
- \blacktriangleright that assumptions might be wrong . . .
- ▶ that serendipities happen ...
- ▶ but only if you are doing something . . .
- \blacktriangleright with interest and passion . . .
- \blacktriangleright or just the opposite . . .
- ▶ but doing.

back to work!

- 1. introduction
- 2. current injection
- 3. current injection devices
- 4. current injection networks
- 5. the optimal current injection
- 6. switching current injection device
- 7. the discontinuous conduction mode
- 8. passive resistance emulation

2. The Third Harmonic Current Injection

- ▶ a way to patch the gaps in the input currents
- optimization of the injection parameters
- \blacktriangleright and a conclusion that improvements do not come for free
- about symbolic computation
- ▶ and about a misconception

4. Current Injection Networks

- \blacktriangleright how to create a simple circuit that provides the current to be injected . . .
- about parasitic effects
- \blacktriangleright and spectral analysis
- about evolution of ideas
- and about wrong assumptions
- ▶ that are going to follow us for the most of the time

5. The Optimal Current Injection

- ▶ ideal input currents might be achieved
- ▶ for almost the same price
- ▶ if you allow resistors
- ▶ or if you can emulate them
- ▶ this required just some linear algebra
- ▶ at a right moment
- \blacktriangleright which every one knew $\ldots\,$ after they saw

6. Switching Current Injection Device

- ▶ a logical solution to our problem
- ▶ and an efficient one
- $\blacktriangleright\,$ but requires three bidirectional switches
- ▶ and some control circuitry
- ▶ reduces currents that flow around
- \blacktriangleright otherwise almost the same . . .

7. The Discontinuous Conduction Mode

- \blacktriangleright honestly, a dirt hidden beneath the carpet for a long time
- ▶ but fun to analyze
- ▶ and turned out to be useful
- ▶ later on

. . .

- \blacktriangleright a nice application of Dirac δ impulses
- ▶ and a good prediction
- normalization
- \blacktriangleright and numerical simulation
- \blacktriangleright to get better predictions, but fairly general

8. Passive Resistance Emulation

- ▶ a method to improve efficiency
- \blacktriangleright a simple method
- ▶ actually, two methods: current and voltage loaded
- \blacktriangleright application of methods developed for resonant converters
- current loaded resistance emulator expected to be the better one
- \blacktriangleright but it turned out to be the worse
- \blacktriangleright and more complex
- ▶ the voltage loaded resistance emulator turned out to be better
- ▶ and there was a serendipity, the output filter should be omitted

THE END