how to get $i_{Y}$ ?

## Current Injection Networks

$m_{A}$, waveform

$m_{A}$, spectrum, real (cosine) part

$m_{B}$, analytical

$$
\begin{gathered}
m_{B}=\min \left(m_{1}, m_{2}, m_{3}\right) \\
m_{B}=\frac{3 \sqrt{3}}{2 \pi}\left(-1+2 \sum_{k=1}^{\infty} \frac{1}{9 k^{2}-1} \cos \left(3 k \omega_{0} t\right)\right) \\
m_{B}=\sum_{k=0}^{\infty} M_{B, k} \cos \left(3 k \omega_{0} t\right) \\
M_{B, k}= \begin{cases}-\frac{3 \sqrt{3}}{2 \pi} & \text { for } k=0 \\
\frac{3 \sqrt{3}}{\pi} \frac{1}{9 k^{2}-1} & \text { for } \quad k \in \mathbb{N}\end{cases}
\end{gathered}
$$

$m_{A}$, analytical

$$
\begin{gathered}
m_{A}=\max \left(m_{1}, m_{2}, m_{3}\right) \\
m_{A}=\frac{3 \sqrt{3}}{2 \pi}\left(1+2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{9 k^{2}-1} \cos \left(3 k \omega_{0} t\right)\right) \\
m_{A}=\sum_{k=0}^{\infty} M_{A, k} \cos \left(3 k \omega_{0} t\right) \\
M_{A, k}= \begin{cases}\frac{3 \sqrt{3}}{2 \pi} & \text { for } \quad k=0 \\
\frac{3 \sqrt{3}}{\pi} \frac{(-1)^{k+1}}{9 k^{2}-1} & \text { for } \quad k \in \mathbb{N}\end{cases}
\end{gathered}
$$

$m_{B}$, waveform

$m_{B}$, spectrum, real (cosine) part


$$
M_{B, k}=\left\{\begin{array}{ll}
M_{A, k} & \text { for } \quad k=2 n-1 \\
-M_{A, k} & \text { for } \quad k=2 n
\end{array} \quad \text { for } n \in \mathbb{N}\right.
$$

$m_{\text {OUT }}$, analytical

$$
\begin{gathered}
m_{\text {OUT }}=m_{A}-m_{B}=\max \left(m_{1}, m_{2}, m_{3}\right)-\min \left(m_{1}, m_{2}, m_{3}\right) \\
m_{\text {OUT }}=\frac{3 \sqrt{3}}{\pi}\left(1-2 \sum_{k=1}^{\infty} \frac{1}{36 k^{2}-1} \cos \left(6 k \omega_{0} t\right)\right) \\
m_{\text {OUT }}=\sum_{k=0}^{\infty} M_{\text {OUT }, k} \cos \left(6 k \omega_{0} t\right) \\
M_{\text {OUT }, k}= \begin{cases}\frac{3 \sqrt{3}}{\pi} & \text { for } k=0 \\
-\frac{6 \sqrt{3}}{\pi} \frac{1}{36 k^{2}-1} & \text { for } k \in \mathbb{N}\end{cases}
\end{gathered}
$$

and what is our goal?

a few words about power

- $P_{I N J}=\frac{3}{35} P_{I N} \approx 8.571 \% P_{I N}$
- $P_{\text {INJ }}=\frac{3}{32} P_{\text {OUT }}=9.375 \% P_{\text {OUT }}$
- $P_{I N J}$ taken by the current injection network form the rectifier output
- $v_{N}=0$, no way to inject the power back to the mains
- besides, $i_{X}=\frac{1}{2} I_{\text {OUT }} \cos \left(3 \omega_{0} t\right)$, again no way to restore $P_{I N J}$
- there has to be something dissipative in the current injection network!

$m_{\text {OUT }}$, spectrum, real (cosine) part

aiming ...

$$
\begin{gathered}
i_{Y}=\frac{3}{2} I_{O U T} \cos \left(3 \omega_{0} t\right) \\
i_{I A}=i_{I B}=\frac{1}{2} i_{Y}
\end{gathered}
$$

out of $v_{A}$ and $v_{B}$ with given waveforms and spectra, having $v_{N}=0$
equivalent circuit at odd triples of the line frequency

since $M_{B, 2 n-1}=M_{A, 2 n-1}$
if the circuit is symmetric:

$$
i_{I A, 2 n-1}=i_{I B, 2 n-1}=\frac{1}{2} i_{Y, 2 n-1}
$$

even symmetry
if the circuit is symmetric:

$$
\begin{gathered}
i_{I B, 2 n}=-i_{I A, 2 n} \\
i_{Y, 2 n}=0
\end{gathered}
$$

published in ...
W. B. Lawrance, W. Mielczarski
"Harmonic current reduction in a three-phase diode bridge rectifier"

IEEE Transactions on Industrial Electronics, pp. 571-576, vol. 39, no. 6, Dec. 1992
circuit $\# 1$, at odd $3 \omega_{0}$


circuit \#1, realistic

circuit $\# 1$, at odd $3 \omega_{0}$, reduced


$$
3 \omega_{0}=\frac{1}{\sqrt{L C}}
$$


circuit $\# 1$, let's get back at odd $3 \omega_{0}$
and just some more...
for $k$ odd, $k=2 n-1$ :

$$
\begin{gathered}
\underline{Z}_{o d d, k}=R+R_{0}\left(j k+\frac{1}{j k}\right) \\
\underline{Z}_{o d d, k}=R\left(1+j Q\left(k-\frac{1}{k}\right)\right) \\
Q \triangleq \frac{R_{0}}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}
\end{gathered}
$$

and $a$ has no effect at all
some math, again ...

$$
\underline{Z}_{e v e n, 2 n}=\frac{\underline{V}_{A, 2 n}}{\underline{I}_{A, 2 n}}=\frac{\underline{V}_{B, 2 n}}{\underline{I}_{B, 2 n}}
$$

$$
\underline{Z}_{\text {even }, 2 n}=2 a R+(2 n) j 3 \omega_{0}(2 L)+\frac{1}{(2 n) j 3 \omega_{0}(C / 2)}
$$

$$
\underline{Z}_{\text {even }, 2 n}=2 a R+(2 n) j 2 R_{0}+\frac{1}{(2 n) j\left(1 /\left(2 R_{0}\right)\right)}
$$

$$
\begin{aligned}
& \stackrel{v_{X}}{i_{Y, 2 n-1}} \boldsymbol{R} \\
& \underline{Z}_{o d d, 2 n-1}=\frac{\underline{V}_{A, 2 n-1}}{\underline{I}_{Y, 2 n-1}}=R+(2 n-1) j 3 \omega_{0} L+\frac{1}{(2 n-1) j 3 \omega_{0} C}
\end{aligned}
$$

$V_{A, 1}=V_{B, 1}=\frac{3 \sqrt{3}}{8 \pi} V_{m} \quad v_{A, 1}=v_{B, 1}=\frac{3 \sqrt{3}}{8 \pi} V_{m} \cos \left(3 \omega_{0} t\right)$
$I_{Y, 1}=\frac{3}{2} I_{O U T} \quad i_{Y, 1}=\frac{3}{2} I_{O U T} \cos \left(3 \omega_{0} t\right)$

$$
R=\frac{V_{A, 1}}{I_{Y, 1}}=\frac{\sqrt{3}}{4 \pi} \frac{V_{m}}{I_{O U T}}
$$

$$
\rho=R \frac{I_{O U T}}{V_{m}}=\frac{\sqrt{3}}{4 \pi} \approx 0.13783
$$

some more math ...

$$
\begin{gathered}
R_{0} \triangleq \sqrt{\frac{L}{C}} \\
3 \omega_{0}=\frac{1}{\sqrt{L C}} \\
L=\frac{R_{0}}{3 \omega_{0}}, \quad 3 \omega_{0} L=R_{0} \\
C=\frac{1}{3 \omega_{0} R_{0}}, \quad 3 \omega_{0} C=\frac{1}{R_{0}}
\end{gathered}
$$

circuit $\# 1$, at even $3 \omega_{0}$

$$
\begin{gathered}
\substack{i_{Y, 2 n}=0 \\
v_{N}=0} \\
\end{gathered}
$$

and just some more ...
for $k$ even, $k=2 n$ :

$$
\begin{aligned}
& \underline{Z}_{\text {even }, k}=2 a R+2 R_{0}\left(j k+\frac{1}{j k}\right) \\
& \underline{Z}_{\text {even }, k}=2 R\left(a+j Q\left(k-\frac{1}{k}\right)\right)
\end{aligned}
$$

and $a$ has some effect now

- $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$
- increase in $Q$ increases selectivity, reduces higher-order harmonics
- increase in $Q$ increases voltage stress on the capacitors
- aim is to use electrolytic capacitors, unipolar

$$
\begin{gathered}
\left(3 \omega_{0} \frac{C}{2}\right)^{-1} \times \frac{3}{4} I_{\text {OUT }}<\frac{3 \sqrt{3}}{2 \pi} V_{m} \\
Q<4
\end{gathered}
$$

simulation, $j_{B}, Q=2, a=0.5$, circuit $\# 1$

simulation, $j_{1}, Q=2, a=0.5$, circuit $\# 1$

$T H D(a), Q$ parameter, circuit \#1


simulation, $j_{Y}, Q=2, a=0.5$, circuit $\# 1$

$T H D(Q)$, a parameter, circuit \#1

$P F(Q)$, a parameter, circuit \#1


circuit \#2

circuit $\# 2$, realistic

circuit $\# 2$, at odd $3 \omega_{0}$, reduced


- the diagrams end when the DCM is reached
- DCM? in CCM $i_{A}>0$ and $i_{B}>0$ all the time
- increased $Q$ improves response
- increased $a$ improves response
S. Kim, P. Enjeti, P. Packebush, I. Pitel
"A new approach to improve power factor and reduce harmonics in a three-phase diode rectifier type utility interface"

IEEE Transactions on Industry Applications, pp. 1557-1564, vol. 30, no. 6, Nov./Dec. 1994
circuit $\# 2$, at odd $3 \omega_{0}$

resonance, $R$, impedance, ...

$$
\begin{gathered}
3 \omega_{0}=\frac{1}{\sqrt{L C}} \\
R=\frac{V_{A, 1}}{I_{Y, 1}}=\frac{\sqrt{3}}{4 \pi} \frac{V_{m}}{I_{\text {OUT }}} \quad \rho=R \frac{I_{\text {OUT }}}{V_{m}}=\frac{\sqrt{3}}{4 \pi} \approx 0.13783 \\
\underline{Z}_{\text {odd }, k}=R\left(1+j Q\left(k-\frac{1}{k}\right)\right)
\end{gathered}
$$

the same as for the circuit $\# 1$; for off triples of $\omega_{0}$, I mean

and some polish ...
for $k$ even, $k=2 n$ :

$$
\begin{gathered}
\underline{Z}_{\text {even }, k}=2 a R+2 R_{0} \frac{1}{j k} \\
\underline{Z}_{\text {even }, k}=2 R\left(a-j Q \frac{1}{k}\right)
\end{gathered}
$$

simulation, $j_{B}, Q=2, a=0.5$, circuit $\# 2$

simulation, $j_{1}, Q=2, a=0.5$, circuit $\# 2$

simulation, $j_{A}, Q=2, a=0.5$, circuit $\# 2$

simulation, $j_{Y}, Q=2, a=0.5$, circuit $\# 2$

$T H D(Q)$, a parameter, circuit \#2

$T H D(a), Q$ parameter, circuit \#2

$P F(a), Q$ parameter, circuit \#2

comparison, $j_{A}, Q=2, a=0.5$

comparison, $j_{Y}, Q=2, a=0.5$


some comments ...

- the diagrams end when the DCM is reached
- DCM? in CCM $i_{A}>0$ and $i_{B}>0$ all the time
- increased $Q$ improves response
- increased $a$ improves response
- much worse than the circuit \#1
- reduced CCM range
comparison, $j_{B}, Q=2, a=0.5$

comparison, $j_{1}, Q=2, a=0.5$


| CID \# | THD $\left(i_{k}\right)$ | $P F$ |
| :---: | ---: | ---: |
| 1 | $5.88 \%$ | 0.9982 |
| 2 | $10.35 \%$ | 0.9944 |

comparison, $P F$
\#1


\#2


this story was published in ...

Predrag Pejović, Žarko Janda
"An Analysis of Three Phase Low Harmonic Rectifiers Applying the Third Harmonic Current Injection"

IEEE Transactions on Power Electronics,
vol. 14, no. 3, pp. 397-407, May 1999
some comments $\qquad$ and a comparison

- comparison between the two circuits ...
- fair comparison, $Q$ and $a$ are the same

1. capacitors are the same
2. VA-ratings of the inductors "the same" $2 S_{L, \# 1}=S_{L, \# 2}$

- although $\# 2$ is likely to have lower $a$, inductors ...
- circuit \#2 performs worse:

1. higher THD
2. lower $P F$
3. pronounced DCM problems
4. higher $Q$ required

- but published later!
conclusions after the analyses
- even triples of $\omega_{0}$ cause big trouble:

1. high $T H D$
2. lower PF
3. DCM

- is there a way to get rid of the even triples completely?
circuit $\# 3$, asymmetric

published in ...

Predrag Pejović, Žarko Janda
"An Improved Current Injection Network for Three Phase High Power Factor Rectifiers that Apply the Third Harmonic Current Injection"

IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 497-499, April 2000
and rejected for EPE'99, in "as is" form

some notes

$$
\begin{aligned}
& \qquad R=\frac{V_{A, 1}}{I_{Y, 1}}=\frac{\sqrt{3}}{4 \pi} \frac{V_{m}}{I_{O U T}} \quad \rho=R \frac{I_{O U T}}{V_{m}}=\frac{\sqrt{3}}{4 \pi} \approx 0.13783 \\
& \qquad \underline{Z}_{o d d, k}=R\left(1+j Q\left(k-\frac{1}{k}\right)\right) \\
& \qquad \underline{Z}_{\text {even }, k}=\infty \\
& \text { 1. for "odd triples" the same as for the both of already } \\
& \text { analyzed circuits } \\
& \text { 2. for "even triples" quite different, open circuit }
\end{aligned}
$$

- $a$ is omitted; actually, makes no difference; there is nothing at even $3 \omega_{0}$, where $a$ has an effect
- having one inductor is an advantage
- what is the VA-rating of the 1:1 transformer?

1. $I_{T R M S}=\frac{3}{4 \sqrt{2}} I_{O U T}$
$v_{T}=\frac{1}{2}\left(v_{O U T}-V_{\text {OUT }}\right) \quad$ (prove!)
2. $\lambda_{T \text { max }}$ to be found;
however: small amplitude, sixth harmonic dominant
$\lambda_{T \text { max }}$, numerical estimate

$T H D(Q)$, derate with $Q \ldots$ derate?

$P F(Q)$
$j_{Y}, Q=0$

$j_{Y}, Q=1$

$j_{Y}, Q=3$

$j_{1}, Q=0$


$j_{Y}, Q=2$

$j_{Y}, Q=4$

$j_{1}, Q=1$


$j_{1}, Q=4$

rectifier as a whole...

$v_{1}$, experimental


some figures ...

| $Q$ | $T H D$ | $P F$ |
| ---: | ---: | ---: |
| 0.0 | 4.02 | 0.9992 |
| 1.0 | 5.01 | 0.9987 |
| 2.0 | 5.10 | 0.9987 |
| 3.0 | 5.11 | 0.9987 |
| 4.0 | 5.12 | 0.9987 |

$v_{1}$ and $i_{1}$, experimental

$v_{1}$ and $i_{1}$, experimental, spectra

$v_{2}$ and $i_{2}$, experimental

$v_{2}$ and $i_{2}$, experimental, spectra

$v_{3}$, experimental

$i_{R 1}$, experimental


$v_{3}$ and $i_{3}$, experimental

$v_{3}$ and $i_{3}$, experimental, spectra

$i_{R 2}$, experimental

$i_{R 3}$, experimental

$i_{X 2}$, experimental

$i_{Y}$, experimental

$v_{B}$ and $i_{B}$, experimental

$i_{X 1}$, experimental

$i_{X 3}$, experimental

$v_{A}$ and $i_{A}$, experimental

$i_{I A}$, experimental



| $k$ | $I_{k R M S}[\mathrm{~A}]$ | $V_{k R M S}[\mathrm{~V}]$ | $S[\mathrm{VA}]$ | $P[\mathrm{~W}]$ |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 8.00 | 93.63 | 748.95 | 744.85 |
| 2 | 7.94 | 92.25 | 732.07 | 728.56 |
| 3 | 7.94 | 94.08 | 747.11 | 743.89 |

experimental results...

$$
\begin{aligned}
& I_{\text {OUT }}=9.53 \mathrm{~A} \\
& V_{\text {OUT }}=213.48 \mathrm{~V} \\
& P_{\text {OUT }}=2035.32 \mathrm{~W} \\
& P_{\text {IN }}=2217.30 \mathrm{~W} \\
& \eta=91.793 \%
\end{aligned}
$$

circuit $\# 3$, no resonance

the whole circuit ...

$m_{A V}$


analytical optimization...

$$
\begin{gathered}
T H D_{\min }=\frac{\sqrt{4 \pi^{4}-27 \pi^{2}+216 \sqrt{3} \pi-1296}}{2 \pi^{2}-3 \sqrt{3} \pi+36} \approx 4.01 \% \\
\sigma_{o p t}=\frac{4 \pi}{\sqrt{3}} \\
\sigma_{o p t}=\frac{1}{\rho}
\end{gathered}
$$

$j_{1}, \sigma_{o p t}$

$P F(\sigma)$

conclusions

- circuits $\# 1, \# 2$, and $\# 3$ compared
- circuit \#3 provides the best performance:

1. the smallest $T H D$
2. single inductor
3. good dependence on $Q$
4. no dependence on $a$
5. not having problems with the DCM
6. special version, $Q=0$, without resonance

- all future designs will assume circuit \#3
- circuits \#1 and \#2 abandoned
"future work"

1. is there a way to improve the $T H D$ further?
2. is there a simple way to restore the power taken by the current injection network?
3. what happens in the DCM? any interest in that?
