
Current Injection Devices



current injection device (CID)?
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element equations

iX1 = iX2 = iX3 =
1

3
iY

vN =
1

3
(v1 + v2 + v3)

which is:

1. resistive, i.e. no d
dt in element equations

2. non-dissipative, i.e. vN iY − v1 iX1 − v2 iX2 − v3 iX3 = 0



possible? out-of-trash solution, CID #0
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what is this for? a specific application . . .

intended for:

v1 = Vm cos (ω0t)

v2 = Vm cos

(
ω0t−

2π

3

)

v3 = Vm cos

(
ω0t−

4π

3

)
and

iY =
3

2
IOUT cos (3ω0t)

iX =
1

2
IOUT cos (3ω0t)



VA-rating?

I a rough measure of the component size
I magnetic components should not:

1. cause explosions
2. cause fire

I which means:
1. | ~B| < Bsat

2. JRMS < Jmax

I to simplify, let’s neglect dependence on frequency
I we deal mainly with ω0 and 3ω0

I as stated, let’s neglect derate with frequency: skin effect,
proximity effect, eddy currents, hysteresis losses, . . .

I in every transformer, there are windings and the core . . .



current handling capability; preventing fire

the windings should fit into the core window

nw∑
k=1

Nk Ik RMS ≤ kff JmaxAwindow

where

kff JmaxAwindow

is the “current handling capability” of the core

more turns, more stress on current handling



a word about flux . . .

flux linkage

λk =

∫
vk (t) dt

don’t mention integrating constants, please

assuming perfect coupling

λ1
N1

= . . . =
λnw

Nnw

= Φ

where Φ is the core flux



flux handling capability; preventing explosions

the core should not saturate

λkmax
Nk

≤ Φmax

for k ∈ {1, . . . nw} where

Φmax = AcoreBsat

is the “flux handling capability” of the core

more turns, less stress on flux handling

there is a trade-off over Nk variable



current and flux



let’s put them together . . .

let the winding indexed 1 be “privileged”

λ1max
N1

nw∑
k=1

Nk Ik RMS ≤ AcoreBsat kff JmaxAwindow

λ1max

nw∑
k=1

Nk

N1
Ik RMS ≤ kff JmaxBsatAwindow Acore

λ1max

nw∑
k=1

nk Ik RMS ≤ kff JmaxBsatAwindow Acore

where

nk ,
Nk

N1

are the turns ratios, normalized to N1, n1 = 1



a single-phase two-winding transformer, sinusoidal case

v1 = V1 sin (ω0t)

λ1max =
V1
ω0

=

√
2 V1RMS

ω0

λ1max

2∑
k=1

nk Ik RMS =
V1
ω0

(I1RMS + n2 I2RMS)

n2 I2RMS = I1RMS

λ1max

2∑
k=1

nk Ik RMS =
2
√

2

ω0
V1RMS I1RMS =

2
√

2

ω0
S



finally, VA-rating

for an equivalent size single-phase transformer

S =
ω0

2
√

2
kff JmaxBsatAwindow Acore

reduced for non-sinusoidal cases

S =
ω0

2
√

2
λ1max

nw∑
k=1

nk Ik RMS

please note: ω0 applies for the original single-phase
transformer, where the core is rated

assumed: kff , Jmax, Bsat constant, not dependent on
frequency, waveform, . . .



since we are already here, VA-rating of inductors

vL =
dλL
dt

= L
diL
dt

λL = L iL

λmax = L iLmax

SL =
ω0

2
√

2
λmax ILRMS

SL =
ω0

2
√

2
L iLmax ILRMS

no matter what the actual inductance is . . .



VA-rating, three-phase

not a big deal, just assume symmetry and generalize . . .

S =
3ω0

2
√

2
λ1max

nw∑
k=1

nk Ik RMS



some results to be used . . .

basis to normalize VA-ratings

POUT =
3
√

3

π
Vm IOUT or PIN =

105
√

3

32π
Vm IOUT

some RMSs

IY RMS =
3

2
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2
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IX RMS =
1

2
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2
IOUT



let’s get back to CID #1

1:1 transformer

S1:1 =
ω0

2
√

2
× Vm

√
3

2ω0
× 2× IOUT

2
√

2

S1:1 =

√
3

8
Vm IOUT =

π

24
POUT ≈ 13.09 % POUT

S1:1 =
4π

105
PIN ≈ 11.97 % PIN



back to CID #1 . . .

1:2 transformer

S1:2 =
ω0

2
√

2
× Vm

2ω0
× 2× IOUT

2
√

2

S1:2 =
1

8
Vm IOUT =

π

24
√

3
POUT ≈ 7.56 % POUT

S1:2 =
4π

105
√

3
PIN ≈ 6.91 % PIN

a wrong measure: S1:1 + S1:2 ≈ 20.65 % POUT , but not so bad

. . . in this way we compare the transformers.



a solution: theoretical (CID #2)
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VA-rating, #2

S#2 =
3ω0

2
√

2
× Vm
ω0
× 2× IOUT

2
√

2

S#2 =
3

4
Vm IOUT =

π

4
√

3
POUT ≈ 45.34 % POUT

S#2 =
8π

35
√

3
PIN ≈ 41.46 % PIN

pretty big rating, too big . . .



a solution: the real one (CID #3)
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it is simple with iX1, iX2, and iX3 . . .

iX3 = iX1

iX1 = iX2

iX2 = iX3

iY = iX1 + iX2 + iX3

so, finally

iX1 = iX2 = iX3 =
1

3
iY



vT1, vT2, vT3, vN . . .

v1 = vN + vT2 − vT1

v2 = vN + vT3 − vT2

v3 = vN + vT1 − vT3
and

0 = vT1 + vT2 + vT3



vT1, vT2, vT3, vN . . .

vT1 =
v3 − v1

3

vT2 =
v1 − v2

3

vT3 =
v2 − v3

3

vN =
v1 + v2 + v3

3
= 0



VA-rating, #3

S#3 =
3ω0

2
√

2
× Vm

√
3

3ω0
× 2× IOUT

2
√

2

S#3 =

√
3

4
Vm IOUT =

π

12
POUT ≈ 26.18 % POUT

S#3 =
8π

105
PIN ≈ 23.94 % PIN

not so big rating, much better than #2

applied in all of the experiments (to be) presented here



a solution: wishful thinking (CID #4)
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why the thinking is wishful?
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“somewhat” idealized . . .
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element equations from “somewhat idealized” . . .

n iX1 = n iX2 = n iX3

iX1 = iX2 = iX3 = iX = iY /3

Φ1 + Φ2 + Φ3 = 0

n
dΦ1

dt
+ n

dΦ2

dt
+ n

dΦ3

dt
= 0

(vN − v1) + (vN − v2) + (vN − v3) = 0

vN =
v1 + v2 + v3

3
= 0

yup, that’s it! . . . or is it?



VA-rating, #4

S#4 =
3ω0

2
√

2
× Vm
ω0
× IOUT

2
√

2
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3

8
Vm IOUT =

π

8
√

3
POUT ≈ 22.67 % POUT

S#4 =
4π

35
√

3
PIN ≈ 20.73 % PIN

S#4 =
1

2
S#2

an improvement over S#2 and even S#3 . . .

but for what price?



“somewhat less” idealized . . .
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element equations . . .

iX1 = iX2 = iX3 = iX =
1

3
iY

Φ1 + Φ2 + Φ3 = Φ0 =
n iX
Rm0

n
dΦ1

dt
+ n

dΦ2

dt
+ n

dΦ3

dt
= n

dΦ0

dt
=

n2

Rm0

diX
dt

(vN − v1) + (vN − v2) + (vN − v3) =
n2

Rm0

diX
dt



element equations . . .

3 vN =
n2

3Rm0

diY
dt

vN =
n2

9Rm0

diY
dt

= LN
diY
dt

LN ,
n2

9Rm0

which might be a problem . . .



a hybrid between #3 and #4

v1 v2 v3

iX1 iX2 iX3

iY

vN

vT3n

vT3m

vT2n

vT2m

vT1n

vT1m

+

+++

++

−−−

− − −

n n n

m m m



magnetic circuit of the hybrid . . .
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magnetomotive force equations, 3 items . . .

miX3 − n iX1 −Rm Φ1 −Rm0 Φ0 = 0

miX1 − n iX2 −Rm Φ2 −Rm0 Φ0 = 0

miX2 − n iX3 −Rm Φ3 −Rm0 Φ0 = 0



KΦL, 1 item . . .

Φ1 + Φ2 + Φ3 − Φ0 = 0

hint #1: we have four equations this far; eliminate Φ0; three
equations remain

hint #2: solve the remaining three equations over Φ1, Φ2,
and Φ3

hint #3: differentiate over time, d
dt)

why? we gonna need them that way
(teaching practice: put the parallel in a sequence)



voltage equations, 3 items, real KVL . . .

u1 = v1 − vN = n
dΦ1

dt
−m dΦ2

dt

u2 = v2 − vN = n
dΦ2

dt
−m dΦ3

dt

u3 = v3 − vN = n
dΦ3

dt
−m dΦ1

dt

and now you know why!



the result . . .

after having fun with wxMaxima . . .

 u1
u2
u3

 =

 L −M −M
−M L −M
−M −M L

 d

dt

 iX1

iX2

iX3



L =
n2 +m2

3R0 +R
+

2R0

(
n2 + nm+m2

)
Rm (3R0 +Rm)

M =
nm

3R0 +R
+
R0

(
n2 + nm+m2

)
Rm (3R0 +Rm)



a test . . .
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and the final result . . .

vN = LN
diY
dt

LN =
L− 2M

3

LN =
n2 − 2nm+m2

3 (3Rm0 +Rm)

which for n = m . . .

and for n = 0 . . .

and for m = 0 . . .



a disastrous solution . . . (no #)
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a disastrous solution, why is it such a disaster?

3ω0 =
1√
LC

I current sharing depends on parasitic resistance
I resonance constraints to be met
I tolerances?
I transient response?
I bipolar capacitors?
I leakage at ω0?
I Q-factor?
I VA-rating?



a solution: nice one (CID T#1)
v1 v2 v3

iR3iR2iR1
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waveforms, primary, 1:1 assumed . . .



VA rating, T#1

the waveforms are different, but THD =
√

32π2

315 − 1 ≈ 5.12 %

ST#1 =
3ω0

2
√

2
× Vm
ω0
× 2×

√
41

48
IOUT

ST#1 =

√
123

32
Vm IOUT

ST#1 =
π
√

41

12
√

2
POUT ≈ 1.1853POUT

ST#1 =
8π
√

41

105
√

2
PIN ≈ 1.0837PIN

no problem with LN ; proof?



a solution: not so nice (CID T#2)

v1 v2 v3

iR3iR2iR1

iY

iP1 iP2 iP3

vP3vP2vP1

1 1 1

n n n

vN



element equations . . .

iR1 − n iP1 = F0

iR2 − n iP2 = F0

iR3 − n iP3 = F0

iP1 + iP2 + iP3 = 0

four equations, seven variables, solve for iP1, iP2, iP3, and F0

(not that we really care about F0)



element equations . . .

note that iR1 + iR2 + iR3 = iY = 3 iX

iP1 =
1

n
(iR1 − iX)

iP2 =
1

n
(iR2 − iX)

iP3 =
1

n
(iR3 − iX)

looks like this is what we need, but LN is the problem . . .

try to determine LN . . .



VA-rating, T#2

ST#2 =
3ω0
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π
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(√
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√
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√
105

12
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POUT ≈ 1.1403POUT

ST#2 =
16π

35
√

6

(√
41

4
√

3
+

√
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12

)
PIN ≈ 1.0425PIN



conclusions

I several current injection devices introduced
I all of the devices are magnetic devices
I volt-ampere rating introduced as a measure
I magnetic circuits used to analyze
I zigzag transformer based CID, CID#3, of interest (23.94 %)
I delta-star (D-Y) transformer based CID, CID T#1, of

interest (+8.37 %)
I problems with zero-sequence inductance . . .
I problems?


