Journal article Open Access

Network service chaining using segment routing in multi-layer networks

Francesco Paolucci

Network service chaining, originally conceived in the network function virtualization (NFV) framework for software defined networks (SDN), is becoming an attractive solution for enabling service differentiation enforcement to microflows generated by data centers, 5G fronthaul and Internet of Things (IoT) cloud/fog nodes, and traversing a metro-core network. However, the current IP/MPLS-over optical multi-layer network is practically unable to provide such service chain enforcement. First, MPLS granularity prevents microflows from being conveyed in dedicated paths. Second, service configuration for a huge number of selected flows with different requirements is prone to scalability concerns, even considering the deployment of a SDN network. In this paper, effective service chaining enforcement along traffic engineered (TE) paths is proposed using segment routing and extended traffic steering mechanisms for mapping micro-flows. The proposed control architecture is based on an extended SDN controller encompassing a stateful path computation element (PCE) handling microflow computation and placement supporting service chains, whereas segment routing allows automatic service enforcement without the need for continuous configuration of the service node. The proposed solution is experimentally evaluated in segment routing over an elastic optical network (EON) network testbed with a deep packet inspection service supporting dynamic and automatic flow enforcement using Border Gateway Protocol with Flow Specification (BGP Flowspec) and OpenFlow protocols as alternative traffic steering enablers. Scalability of flow computation, placement, and steering are also evaluated showing the effectiveness of the proposed solution.

Files (1.4 MB)
Name Size
1.4 MB Download
Views 16
Downloads 112
Data volume 156.1 MB
Unique views 15
Unique downloads 104


Cite as