Journal article Open Access

4D Modelling of Low Visibility Underwater Archaeological Excavations Using Multi-Source Photogrammetry in the Bulgarian Black Sea

Rodrigo Pacheco-Ruiz; Jonathan Adams; Felix Pedrotti


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">G. F. Bass, "Archaeology Under Water," in Ancient peoples and places,
New York, 1966.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">J. Green, "Maritime archaeology: a technical handbook," 1990.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">M. Rule, "The Mary Rose: The Excavation and Raising of Henry VIIIs
Flagship," 1982.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">N. Rule, "Some techniques for cost-effective three-dimensional mapping
of underwater sites," BAR International Series, vol. 598, p. 51, 1995.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">I. Karayotov, "The Antique and Medieval port at the mouth of the river
Ropotamo," Acta TAB, vol. 5, pp. 64–66, 1990.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">C. J. Lister, R. N. Hiscott, A. E. Aksu, and P. J. Mudie, "Compositional
trends through the Holocene mud succession of the southwestern Black
Sea shelf: Implications for sedimentary provenance and water-level
history," Sedimentary Geology, vol. 316, pp. 13–25, 2015.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">G. Lericolais, J. Bourget, I. Popescu, P. Jermannaud, T. Mulder, S. Jorry,
and N. Panin, "Late Quaternary deep-sea sedimentation in the western
Black Sea: New insights from recent coring and seismic data in the
deep basin," Global and Planetary Change, vol. 103, no. April 2013,
pp. 232–247, apr 2013.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">H. Br¨uckner, D. Kelterbaum, O. Marunchak, A. Porotov, and A. V¨ott,
"The Holocene sea level story since 7500 BP Lessons from the Eastern
Mediterranean, the Black and the Azov Seas," Quaternary International,
vol. 225, no. 2, pp. 160–179, oct 2010.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">V. Yanko-Hombach, A. S. Gilbert, and P. Dolukhanov, "Controversy
over the great flood hypotheses in the Black Sea in light of geological,
paleontological, and archaeological evidence," Quaternary International,
vol. 167-168, pp. 91–113, jun 2007.
[10] I. Popescu, G. Lericolais, N. Panin, A. Normand, C. Dinu, and E. Le
Drezen, "The Danube submarine canyon (Black Sea): morphology and
sedimentary processes," Marine Geology, vol. 206, no. 1-4, pp. 249–265,
may 2004.
[11] A. E. Aksu, H. Gillespie, and P. J. Mudie, "Dino flagellate cysts
, freshwater algae and fungal spores as salinity indicators in Late
Quaternary cores from Marmara and Black seas," vol. 190, 2002.
[12] A. E. Aksu, R. N. Hiscott, and D. Ya, "Oscillating Quaternary water
levels of the Marmara Sea and vigorous outflow into the Aegean Sea
from the Marmara Sea Black Sea drainage corridor," vol. 153, pp.
275–302, 1999.
[13] W. B. F. Ryan, W. C. Pitman, C. Major, K. Shimkus, V. Moskalenko,
G. A. Jones, P. Dimitrov, N. Goriir, M. Saking, and H. Yiice, "An abrupt
drowning of the Black Sea shelf," vol. 138, pp. 119–126, 1997.
[14] J. McCarthy and J. Benjamin, "Multi-image Photogrammetry for
Underwater Archaeological Site Recording: An Accessible, Diver-Based
Approach," Journal of Maritime Archaeology, mar 2014.
[15] C. Beltrame and E. Costa, "3D survey and modelling of shipwrecks in
different underwater environments," Journal of Cultural Heritage, 2017.
[16] O. Barkai and Y. Kahanov, "The Tantura F Shipwreck, Israel,"
International Journal of Nautical Archaeology, vol. 36, no. 1, p. 21,
2007.
[17] M. Eliyahu, O. Barkai, Y. Goren, N. Eliaz, Y. Kahanov, and
D. Ashkenazi, "The iron anchors from the Tantura F shipwreck:
typological and metallurgical analyses," Journal of Archaeological
Science, vol. 38, no. 2, pp. 233–245, 2011.
[18] N. Rule, "The Direct Survey Method (DSM) OF Underwater Survey,
And Its Application Underwater," International Journal of Nautical
Archaeology, vol. 18, no. 2, pp. 157–162, 1989.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">4D modelling</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Black Sea</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">maritime archaeology</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">underwater photogrammetry</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Bronze Age</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">low visibility.</subfield>
  </datafield>
  <controlfield tag="005">20200120172051.0</controlfield>
  <controlfield tag="001">1316478</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Jonathan Adams</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Felix Pedrotti</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">832353</subfield>
    <subfield code="z">md5:bf4ac43264c1ca1c01f41e6a6f3cbdef</subfield>
    <subfield code="u">https://zenodo.org/record/1316478/files/10008896.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-03-03</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1316478</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="v">11.0</subfield>
    <subfield code="p">International Journal of Earth, Energy and Environmental Sciences</subfield>
    <subfield code="n">4</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Rodrigo Pacheco-Ruiz</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">4D Modelling of Low Visibility Underwater Archaeological Excavations Using Multi-Source Photogrammetry in the Bulgarian Black Sea</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">This paper introduces the applicability of underwater&lt;br&gt;
photogrammetric survey within challenging conditions as the main&lt;br&gt;
tool to enhance and enrich the process of documenting archaeological&lt;br&gt;
excavation through the creation of 4D models. Photogrammetry was&lt;br&gt;
being attempted on underwater archaeological sites at least as early&lt;br&gt;
as the 1970s&amp;rsquo; and today the production of traditional 3D models is&lt;br&gt;
becoming a common practice within the discipline. Photogrammetry&lt;br&gt;
underwater is more often implemented to record exposed underwater&lt;br&gt;
archaeological remains and less so as a dynamic interpretative tool.&amp;nbsp; Therefore, it tends to be applied in bright environments and&lt;br&gt;
when underwater visibility is &amp;gt; 1m, reducing its implementation&lt;br&gt;
on most submerged archaeological sites in more turbid conditions.&lt;br&gt;
Recent years have seen significant development of better digital&lt;br&gt;
photographic sensors and the improvement of optical technology,&lt;br&gt;
ideal for darker environments. Such developments, in tandem with&lt;br&gt;
powerful processing computing systems, have allowed underwater&lt;br&gt;
photogrammetry to be used by this research as a standard recording&lt;br&gt;
and interpretative tool. Using multi-source photogrammetry (5,&lt;br&gt;
GoPro5 Hero Black cameras) this paper presents the accumulation of&lt;br&gt;
daily (4D) underwater surveys carried out in the Early Bronze Age&lt;br&gt;
(3,300 BC) to Late Ottoman (17th Century AD) archaeological site of&lt;br&gt;
Ropotamo in the Bulgarian Black Sea under challenging conditions&lt;br&gt;
(&amp;lt; 0.5m visibility). It proves that underwater photogrammetry can&lt;br&gt;
and should be used as one of the main recording methods even in low&lt;br&gt;
light and poor underwater conditions as a way to better understand&lt;br&gt;
the complexity of the underwater archaeological record.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1316477</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1316478</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
618
681
views
downloads
All versions This version
Views 618618
Downloads 681681
Data volume 566.8 MB566.8 MB
Unique views 602602
Unique downloads 650650

Share

Cite as