Journal article Open Access

Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery

Buket Boz; Alvaro Diez


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/9ece5c2f-9b29-4517-8a5e-489579bc91fa/10008559.pdf"
      }, 
      "checksum": "md5:d11512769c1641c2d330385850846dc9", 
      "bucket": "9ece5c2f-9b29-4517-8a5e-489579bc91fa", 
      "key": "10008559.pdf", 
      "type": "pdf", 
      "size": 268103
    }
  ], 
  "owners": [
    32148
  ], 
  "doi": "10.5281/zenodo.1315792", 
  "stats": {
    "version_unique_downloads": 143.0, 
    "unique_views": 1218.0, 
    "views": 2813.0, 
    "downloads": 151.0, 
    "unique_downloads": 143.0, 
    "version_unique_views": 1212.0, 
    "volume": 40483553.0, 
    "version_downloads": 151.0, 
    "version_views": 2794.0, 
    "version_volume": 40483553.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1315792", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1315791", 
    "bucket": "https://zenodo.org/api/files/9ece5c2f-9b29-4517-8a5e-489579bc91fa", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1315791.svg", 
    "html": "https://zenodo.org/record/1315792", 
    "latest_html": "https://zenodo.org/record/1315792", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1315792.svg", 
    "latest": "https://zenodo.org/api/records/1315792"
  }, 
  "conceptdoi": "10.5281/zenodo.1315791", 
  "created": "2018-07-19T17:29:30.715842+00:00", 
  "updated": "2019-04-09T14:05:01.412485+00:00", 
  "conceptrecid": "1315791", 
  "revision": 4, 
  "id": 1315792, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1315792", 
    "description": "Waste heat recovery by means of Organic Rankine<br>\nCycle is a promising technology for the recovery of engine<br>\nexhaust heat. However, it is complex to find out the optimum<br>\ncycle conditions with appropriate working fluids to match exhaust<br>\ngas waste heat due to its high temperature. Hence, this paper<br>\nfocuses on comparing sub-critical and supercritical ORC conditions<br>\nwith eight working fluids on a combined diesel engine-ORC<br>\nsystem. The model employs two ORC designs, Regenerative-ORC<br>\nand Pre-Heating-Regenerative-ORC respectively. The thermodynamic<br>\ncalculations rely on the first and second law of thermodynamics,<br>\nthermal efficiency and exergy destruction factors are the fundamental<br>\nparameters evaluated. Additionally, in this study, environmental<br>\nand safety, GWP (Global Warming Potential) and ODP (Ozone<br>\nDepletion Potential), characteristic of the refrigerants are taken<br>\ninto consideration as evaluation criteria to define the optimal ORC<br>\nconfiguration and conditions. Consequently, the studys outcomes<br>\nreveal that supercritical ORCs with alkane and siloxane are more<br>\nsuitable for high temperature exhaust waste heat recovery in contrast<br>\nto sub-critical conditions.", 
    "language": "eng", 
    "title": "Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "journal": {
      "volume": "11.0", 
      "issue": "2", 
      "title": "International Journal of Electrical, Electronic and Communication Sciences"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1315791"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1315792"
          }
        }
      ]
    }, 
    "version": "10008559", 
    "references": [
      "S. N. Hossain and S. Bari, \"Waste heat recovery from the exhaust\nof a diesel generator using rankine cycle,\" Energy Conversion and\nManagement, vol. 75, pp. 141\u2013151, 2013.", 
      "H. Chen, D. Y. Goswami, and E. K. Stefanakos, \"A review of\nthermodynamic cycles and working fluids for the conversion of low-grade\nheat,\" Renewable and sustainable energy reviews, vol. 14, no. 9, pp.\n3059\u20133067, 2010.", 
      "D. A. Arias, T. A. Shedd, and R. K. Jester, \"Theoretical analysis of waste\nheat recovery from an internal combustion engine in a hybrid vehicle,\"\nSAE Technical Paper, Tech. Rep., 2006.", 
      "A. Uusitalo, J. Honkatukia, T. Turunen-Saaresti, and J. Larjola, \"A\nthermodynamic analysis of waste heat recovery from reciprocating engine\npower plants by means of organic rankine cycles,\" Applied Thermal\nEngineering, vol. 70, no. 1, pp. 33\u201341, 2014.", 
      "K. Kulkarni and A. Sood, \"Performance analysis of organic rankine cycle\n(orc) for recovering waste heat from a heavy duty diesel engine,\" SAE\nTechnical Paper, Tech. Rep., 2015.", 
      "C. Sprouse and C. Depcik, \"Review of organic rankine cycles for\ninternal combustion engine exhaust waste heat recovery,\" Applied thermal\nengineering, vol. 51, no. 1, pp. 711\u2013722, 2013.", 
      "R. Law, A. Harvey, and D. Reay, \"Opportunities for low-grade\nheat recovery in the uk food processing industry,\" Applied thermal\nengineering, vol. 53, no. 2, pp. 188\u2013196, 2013.", 
      "I. Vaja and A. Gambarotta, \"Internal combustion engine (ice) bottoming\nwith organic rankine cycles (orcs),\" Energy, vol. 35, no. 2, pp. 1084\u20131093,\n2010.", 
      "B. Peris, J. Navarro-Esbr\u00b4\u0131, and F. Mol\u00b4es, \"Bottoming organic rankine\ncycle configurations to increase internal combustion engines power output\nfrom cooling water waste heat recovery,\" Applied Thermal Engineering,\nvol. 61, no. 2, pp. 364\u2013371, 2013.\n[10] A. Schuster, S. Karellas, and R. Aumann, \"Efficiency optimization\npotential in supercritical organic rankine cycles,\" Energy, vol. 35, no. 2,\npp. 1033\u20131039, 2010. [11] S. Glover, R. Douglas, L. Glover, G. McCullough, and S. McKenna,\n\"Automotive waste heat recovery: Working fluid selection and related\nboundary conditions,\" International Journal of Automotive Technology,\nvol. 16, no. 3, pp. 399\u2013409, 2015.\n[12] R. Freymann, W. Strobl, and A. Obieglo, \"The turbosteamer: a system\nintroducing the principle of cogeneration in automotive applications,\"\nMTZ worldwide, vol. 69, no. 5, pp. 20\u201327, 2008.\n[13] A. F. Agudelo, R. Garc\u00b4\u0131a-Contreras, J. R. Agudelo, and O. Armas,\n\"Potential for exhaust gas energy recovery in a diesel passenger car under\neuropean driving cycle,\" Applied Energy, vol. 174, pp. 201\u2013212, 2016.\n[14] I. Statistics, \"Co2 emissions from fuel combustion-highlights,\" IEA,\nParis http://www. iea. org/co2highlights/co2highlights. pdf. Cited July,\n2011.\n[15] C. Kalra, G. Becquin, J. Jackson, A. L. Laursen, H. Chen, K. Myers,\nA. Hardy, H. Klockow, and J. Zia, \"High-potential working fluids\nand cycle concepts for next-generation binary organic rankine cycle\nfor enhanced geothermal systems,\" in 37th Workshop on Geothermal\nReservoir Engineering, Stanford, CA, Jan, 2012.\n[16] S. Glover, R. Douglas, M. De Rosa, X. Zhang, and L. Glover,\n\"Simulation of a multiple heat source supercritical orc (organic rankine\ncycle) for vehicle waste heat recovery,\" Energy, vol. 93, pp. 1568\u20131580,\n2015.\n[17] H. Teng, G. Regner, and C. Cowland, \"Achieving high engine efficiency\nfor heavy-duty diesel engines by waste heat recovery using supercritical\norganic-fluid rankine cycle,\" SAE Technical Paper, Tech. Rep., 2006.\n[18] H. Teng, G. Regner, and C. Cowland,, \"Waste heat recovery of\nheavy-duty diesel engines by organic rankine cycle part i: hybrid energy\nsystem of diesel and rankine engines,\" SAE Technical Paper, Tech. Rep.,\n2007.\n[19] \"Siemens steam turbine sst-060,\" http://www.energy.siemens.com/ru/en/\nfossil-power-generation/steam-turbines/sst-060.htm, accessed:\n2002-2017.\n[20] E. Wang, H. Zhang, B. Fan, M. Ouyang, Y. Zhao, and Q. Mu, \"Study\nof working fluid selection of organic rankine cycle (orc) for engine waste\nheat recovery,\" Energy, vol. 36, no. 5, pp. 3406\u20133418, 2011.\n[21] J. H\u00e6rvig, K. S\u00f8rensen, and T. J. Condra, \"Guidelines for optimal\nselection of working fluid for an organic rankine cycle in relation to\nwaste heat recovery,\" Energy, vol. 96, pp. 592\u2013602, 2016.\n[22] H. Tian, L. Chang, Y. Gao, G. Shu, M. Zhao, and N. Yan,\n\"Thermo-economic analysis of zeotropic mixtures based on siloxanes\nfor engine waste heat recovery using a dual-loop organic rankine cycle\n(dorc),\" Energy Conversion and Management, vol. 136, pp. 11\u201326, 2017.\n[23] T. Falano, H. K. Jeswani, and A. Azapagic, \"Assessing the environmental\nsustainability of ethanol from integrated biorefineries,\" Biotechnology\njournal, vol. 9, no. 6, pp. 753\u2013765, 2014."
    ], 
    "keywords": [
      "Internal combustion engine", 
      "organic rankine cycle", 
      "waste heat recovery", 
      "working fluids."
    ], 
    "publication_date": "2018-01-01", 
    "creators": [
      {
        "name": "Buket Boz"
      }, 
      {
        "name": "Alvaro Diez"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1315791", 
        "relation": "isVersionOf"
      }
    ]
  }
}
2,794
151
views
downloads
All versions This version
Views 2,7942,813
Downloads 151151
Data volume 40.5 MB40.5 MB
Unique views 1,2121,218
Unique downloads 143143

Share

Cite as