Journal article Open Access

Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery

Buket Boz; Alvaro Diez

DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="" xmlns:adms="" xmlns:cnt="" xmlns:dc="" xmlns:dct="" xmlns:dctype="" xmlns:dcat="" xmlns:duv="" xmlns:foaf="" xmlns:frapo="" xmlns:geo="" xmlns:gsp="" xmlns:locn="" xmlns:org="" xmlns:owl="" xmlns:prov="" xmlns:rdfs="" xmlns:schema="" xmlns:skos="" xmlns:vcard="" xmlns:wdrs="">
  <rdf:Description rdf:about="">
    <rdf:type rdf:resource=""/>
    <dct:type rdf:resource=""/>
    <dct:identifier rdf:datatype=""></dct:identifier>
    <foaf:page rdf:resource=""/>
        <rdf:type rdf:resource=""/>
        <foaf:name>Buket Boz</foaf:name>
        <rdf:type rdf:resource=""/>
        <foaf:name>Alvaro Diez</foaf:name>
    <dct:title>Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery</dct:title>
    <dct:issued rdf:datatype="">2018</dct:issued>
    <dcat:keyword>Internal combustion engine</dcat:keyword>
    <dcat:keyword>organic rankine cycle</dcat:keyword>
    <dcat:keyword>waste heat recovery</dcat:keyword>
    <dcat:keyword>working fluids.</dcat:keyword>
    <dct:issued rdf:datatype="">2018-01-01</dct:issued>
    <dct:language rdf:resource=""/>
    <owl:sameAs rdf:resource=""/>
        <skos:notation rdf:datatype=""></skos:notation>
    <dct:isVersionOf rdf:resource=""/>
    <dct:description>Waste heat recovery by means of Organic Rankine&lt;br&gt; Cycle is a promising technology for the recovery of engine&lt;br&gt; exhaust heat. However, it is complex to find out the optimum&lt;br&gt; cycle conditions with appropriate working fluids to match exhaust&lt;br&gt; gas waste heat due to its high temperature. Hence, this paper&lt;br&gt; focuses on comparing sub-critical and supercritical ORC conditions&lt;br&gt; with eight working fluids on a combined diesel engine-ORC&lt;br&gt; system. The model employs two ORC designs, Regenerative-ORC&lt;br&gt; and Pre-Heating-Regenerative-ORC respectively. The thermodynamic&lt;br&gt; calculations rely on the first and second law of thermodynamics,&lt;br&gt; thermal efficiency and exergy destruction factors are the fundamental&lt;br&gt; parameters evaluated. Additionally, in this study, environmental&lt;br&gt; and safety, GWP (Global Warming Potential) and ODP (Ozone&lt;br&gt; Depletion Potential), characteristic of the refrigerants are taken&lt;br&gt; into consideration as evaluation criteria to define the optimal ORC&lt;br&gt; configuration and conditions. Consequently, the studys outcomes&lt;br&gt; reveal that supercritical ORCs with alkane and siloxane are more&lt;br&gt; suitable for high temperature exhaust waste heat recovery in contrast&lt;br&gt; to sub-critical conditions.</dct:description>
    <dct:description xml:lang="">{"references": ["S. N. Hossain and S. Bari, \"Waste heat recovery from the exhaust\nof a diesel generator using rankine cycle,\" Energy Conversion and\nManagement, vol. 75, pp. 141\u2013151, 2013.", "H. Chen, D. Y. Goswami, and E. K. Stefanakos, \"A review of\nthermodynamic cycles and working fluids for the conversion of low-grade\nheat,\" Renewable and sustainable energy reviews, vol. 14, no. 9, pp.\n3059\u20133067, 2010.", "D. A. Arias, T. A. Shedd, and R. K. Jester, \"Theoretical analysis of waste\nheat recovery from an internal combustion engine in a hybrid vehicle,\"\nSAE Technical Paper, Tech. Rep., 2006.", "A. Uusitalo, J. Honkatukia, T. Turunen-Saaresti, and J. Larjola, \"A\nthermodynamic analysis of waste heat recovery from reciprocating engine\npower plants by means of organic rankine cycles,\" Applied Thermal\nEngineering, vol. 70, no. 1, pp. 33\u201341, 2014.", "K. Kulkarni and A. Sood, \"Performance analysis of organic rankine cycle\n(orc) for recovering waste heat from a heavy duty diesel engine,\" SAE\nTechnical Paper, Tech. Rep., 2015.", "C. Sprouse and C. Depcik, \"Review of organic rankine cycles for\ninternal combustion engine exhaust waste heat recovery,\" Applied thermal\nengineering, vol. 51, no. 1, pp. 711\u2013722, 2013.", "R. Law, A. Harvey, and D. Reay, \"Opportunities for low-grade\nheat recovery in the uk food processing industry,\" Applied thermal\nengineering, vol. 53, no. 2, pp. 188\u2013196, 2013.", "I. Vaja and A. Gambarotta, \"Internal combustion engine (ice) bottoming\nwith organic rankine cycles (orcs),\" Energy, vol. 35, no. 2, pp. 1084\u20131093,\n2010.", "B. Peris, J. Navarro-Esbr\u00b4\u0131, and F. Mol\u00b4es, \"Bottoming organic rankine\ncycle configurations to increase internal combustion engines power output\nfrom cooling water waste heat recovery,\" Applied Thermal Engineering,\nvol. 61, no. 2, pp. 364\u2013371, 2013.\n[10] A. Schuster, S. Karellas, and R. Aumann, \"Efficiency optimization\npotential in supercritical organic rankine cycles,\" Energy, vol. 35, no. 2,\npp. 1033\u20131039, 2010. [11] S. Glover, R. Douglas, L. Glover, G. McCullough, and S. McKenna,\n\"Automotive waste heat recovery: Working fluid selection and related\nboundary conditions,\" International Journal of Automotive Technology,\nvol. 16, no. 3, pp. 399\u2013409, 2015.\n[12] R. Freymann, W. Strobl, and A. Obieglo, \"The turbosteamer: a system\nintroducing the principle of cogeneration in automotive applications,\"\nMTZ worldwide, vol. 69, no. 5, pp. 20\u201327, 2008.\n[13] A. F. Agudelo, R. Garc\u00b4\u0131a-Contreras, J. R. Agudelo, and O. Armas,\n\"Potential for exhaust gas energy recovery in a diesel passenger car under\neuropean driving cycle,\" Applied Energy, vol. 174, pp. 201\u2013212, 2016.\n[14] I. Statistics, \"Co2 emissions from fuel combustion-highlights,\" IEA,\nParis http://www. iea. org/co2highlights/co2highlights. pdf. Cited July,\n2011.\n[15] C. Kalra, G. Becquin, J. Jackson, A. L. Laursen, H. Chen, K. Myers,\nA. Hardy, H. Klockow, and J. Zia, \"High-potential working fluids\nand cycle concepts for next-generation binary organic rankine cycle\nfor enhanced geothermal systems,\" in 37th Workshop on Geothermal\nReservoir Engineering, Stanford, CA, Jan, 2012.\n[16] S. Glover, R. Douglas, M. De Rosa, X. Zhang, and L. Glover,\n\"Simulation of a multiple heat source supercritical orc (organic rankine\ncycle) for vehicle waste heat recovery,\" Energy, vol. 93, pp. 1568\u20131580,\n2015.\n[17] H. Teng, G. Regner, and C. Cowland, \"Achieving high engine efficiency\nfor heavy-duty diesel engines by waste heat recovery using supercritical\norganic-fluid rankine cycle,\" SAE Technical Paper, Tech. Rep., 2006.\n[18] H. Teng, G. Regner, and C. Cowland,, \"Waste heat recovery of\nheavy-duty diesel engines by organic rankine cycle part i: hybrid energy\nsystem of diesel and rankine engines,\" SAE Technical Paper, Tech. Rep.,\n2007.\n[19] \"Siemens steam turbine sst-060,\"\nfossil-power-generation/steam-turbines/sst-060.htm, accessed:\n2002-2017.\n[20] E. Wang, H. Zhang, B. Fan, M. Ouyang, Y. Zhao, and Q. Mu, \"Study\nof working fluid selection of organic rankine cycle (orc) for engine waste\nheat recovery,\" Energy, vol. 36, no. 5, pp. 3406\u20133418, 2011.\n[21] J. H\u00e6rvig, K. S\u00f8rensen, and T. J. Condra, \"Guidelines for optimal\nselection of working fluid for an organic rankine cycle in relation to\nwaste heat recovery,\" Energy, vol. 96, pp. 592\u2013602, 2016.\n[22] H. Tian, L. Chang, Y. Gao, G. Shu, M. Zhao, and N. Yan,\n\"Thermo-economic analysis of zeotropic mixtures based on siloxanes\nfor engine waste heat recovery using a dual-loop organic rankine cycle\n(dorc),\" Energy Conversion and Management, vol. 136, pp. 11\u201326, 2017.\n[23] T. Falano, H. K. Jeswani, and A. Azapagic, \"Assessing the environmental\nsustainability of ethanol from integrated biorefineries,\" Biotechnology\njournal, vol. 9, no. 6, pp. 753\u2013765, 2014."]}</dct:description>
    <dct:accessRights rdf:resource=""/>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
          <dct:RightsStatement rdf:about="">
            <rdfs:label>Creative Commons Attribution 4.0 International</rdfs:label>
        <dcat:accessURL rdf:resource=""/>
All versions This version
Views 4,3304,343
Downloads 240240
Data volume 64.3 MB64.3 MB
Unique views 1,9021,904
Unique downloads 230230


Cite as