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1 Introduction
In this document, instability of the forward Euler integration rule for numeric solution of
ordinary differential equations is illustrated by designing a “perpetuum mobile” which is going
to be verified by simulation. The analysis is focused to the parallel resonant circuit shown in
Fig. 1, which is a stable circuit. However, with some help of forward Euler, discrete model of
the circuit is going to be brought to the verge of instability, and output of a constant amplitude
will be generated, as verified by simulation.

2 Continuous Time Model
To construct an exact, continuous time model of the circuit of Fig. 1, sparse tableau model is
going to be constructed first, being reduced to the state space model by algebraic manipulations
next, and finally reduced to a second order ordinary differential equation over the node voltage.

To form the tableau model, there is one equation over the Kirchhoff’s current law

i1 + i2 + i3 = 0 (1)

three equations over the Kirchhoff’s voltage law

u1 − v1 = 0 (2)

u2 − v2 = 0 (3)
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Figure 1: The circuit.
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u3 − v3 = 0 (4)

and three equations over constitutive relations of the network elements

i1 − C
du1

dt
= 0 (5)

L
d i2
dt
− u2 = 0 (6)

R i3 − u3 = 0. (7)

Reducing the system to state variables, u1 and i2, i.e. algebraically eliminating all the
variables except the state variables, it reduces to

d u1

dt
= − u1

RC
− i2
C

(8)

and
d i2
dt

=
u1

L
. (9)

The system of state equations could be reduced to a second order equation over one state
variable, which expressed in terms of the node voltage v1 = u1 becomes

d2 v1

dt2
+

1

RC

d v1

dt
+

1

LC
v1 = 0. (10)

with the initial conditions
v1(0) = u1(0) (11)

and
v̇1(0) =

d v1

dt

∣∣∣∣
t=0

= −u1(0)

RC
− i2(0)

C
. (12)

Characteristic polynomial of the considered second order ordinary differential equation is

s2 +
1

RC
s+

1

LC
= 0 (13)

which for

R <
1

2

√
L

C
(14)

has real roots

s1, 2 = − 1

2RC
±
√

1

(2RC)2 −
1

LC
. (15)

In the opposite case, the roots are complex conjugate pair

s1, 2 = − 1

2RC
± j

√
1

LC
− 1

(2RC)2 (16)

Analysis of the root locations (15) and (16) results in conclusion that for R > 0 the circuit of
Fig. 1 is stable.
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Figure 2: State variables, exact solution.

As an example, that our analysis would return to later, consider a circuit of Fig. 1 for
R = 10 Ω, L = 100µH, and C = 50µF. For initial conditions u1(0) = 10V, i2(0) = 0, the
circuit response for the state variables is

u1(t) = e−1000 1
s t

(
10 cos

(
1000

√
199

rad
s
t

)
− 10√

199
sin

(
1000

√
199

rad
s
t

))
V (17)

and
i2(t) =

100√
199

e−1000 1
s t sin

(
1000

√
199

rad
s
t

)
A (18)

which is plotted in Fig. 2. Diagrams of instantaneous power at the circuit elements are given
in Fig. 3, and as expected they add up to zero.

3 Discrete Time Model
In order to perform numerical simulation of the circuit of Fig. 1, constitutive equation of the
capacitor (5) is discretized according to the forward Euler discretization rule,

u1, n+1 = u1, n +
∆t

C
iC, n. (19)

To simplify notation in the equations that follow, let us introduce the discretization resistance

RC ,
∆t

C
. (20)

It should be noted that (19) is constitutive equation of an ideal voltage source, since the element
voltage at the time instant indexed n + 1 is completely specified from the circuit variables at
the previous time instant, n.
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Figure 3: Power, exact solution.
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Figure 4: Discretized circuit.

In the same manner as for the capacitor, the inductor is discretized applying the forward
Euler method as

i2, n+1 = i2, n +
∆t

L
uL, n. (21)

To simplify notation, let us introduce the discretization conductance

GL ,
∆t

L
. (22)

Equation (21) is constitutive equation of a current source, since the branch current at n+ 1 is
specified by circuit variables at n.

Discretization of the reactive elements results in the discretized circuit model depicted in
Fig. 4, in which the capacitor is represented by a voltage source specified by (19), and the
inductor is represented by a current source specified by (21).

System of equations that describe the circuit of Fig. 4 is formed using the Modified Nodal
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Analysis (MNA) technique, starting from

i1, n+1 + i2, n+1 + i3, n+1 = 0. (23)

Except for i1, the currents can be expressed in terms of the node voltage v1, which provides
the nodal equation

i1, n+1 +
v1, n+1

R
= −i2, n −GL v1, n (24)

and an additional equation for the element whose current cannot be expressed in terms of the
node voltage

v1, n+1 = v1, n +RC i1, n. (25)

In (24) and (25), the left hand sides contain nodal variables (nodal voltage(s) and added
current(s)) at the time point indexed n + 1. To iterate the solution during the simulation
of transients, it is convenient to have the same variables on the right hand side, but referred to
the time point indexed n. In this goal, i2 is expressed as

i2, n = −i1, n −
1

R
v1, n. (26)

Finally, the system is reduced to MNA variables i1 and v1 as

i1, n+1 +
1

R
v1, n+1 = i1, n +

(
1

R
−GL

)
v1, n (27)

and
v1, n+1 = RC i1, n + v1,n (28)

which is in matrix form given by[
1 1/R
0 1

] [
i1
v1

]
n+1

=

[
1 1/R−GL

RC 1

] [
i1
v1

]
n

. (29)

The system (29) can be solved over the vector of MNA variables, resulting in[
i1
v1

]
n+1

=

[
1−RC/R −GL

RC 1

] [
i1
v1

]
n

(30)

providing a closed-form solution[
i1
v1

]
k

=

[
1−RC/R −GL

RC 1

]k [
i1
v1

]
0

. (31)

It should be noted that the solution of (31) is over MNA variables, v1 and i1. In the case the
state variables are needed, u1 and i2, they can be computed as

u1, k = v1, k (32)

and
i2, k = −i1, k −

1

R
v1, k. (33)

The MNA method is applied to analyze the discretized circuit since the same method is used
in SPICE.
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4 “Perpetuum Mobile”
Solution of the discrete system model (31) involves power of the matrix

M ,

[
1−RC/R −GL

RC 1

]
(34)

which has eigenvalues

λ1, 2 = 1− RC

2R
±
√(

RC

2R

)2

−GLRC . (35)

Our goal is to provide a periodic response, thus the eigenvalues should be a complex conjugate
pair. To meet this requirement (

RC

2R

)2

< GLRC (36)

should be satisfied, which reduces to

1

2

√
RC

GL

< R (37)

or by substituting (20) and (22) to
1

2

√
L

C
< R. (38)

In this case, the eigenvalues are

λ1, 2 = 1− RC

2R
± j

√
GLRC −

(
RC

2R

)2

(39)

with the real part

r , < (λ1, 2) = 1− RC

2R
(40)

and the imaginary part

i , = (λ1) = −= (λ2) =

√
GLRC −

(
RC

2R

)2

. (41)

To provide a periodic response, according to diagonalization of (34) the eigenvalues should
satisfy

|λ1| = |λ2| = 1 (42)

which reduces to
r2 + i2 = 1. (43)

Substituting (40) and (41) results in(
1− RC

2R

)2

+GLRC −
(
RC

2R

)2

= 1 (44)

which can be simplified to the periodic response condition

RGL = 1. (45)

6



According to (22), the time step of forward Euler discretization that provides periodic response
is specified by

∆t =
L

R
. (46)

This choice for ∆t results in
λ1, 2 = e±j ϕ (47)

where

tanϕ =
i

r
=

√
4 RC

∆t
− 1

2 RC
∆t
− 1

. (48)

According to the definition of ϕ given by (47), the number of data points n per period T
provided by the numerical simulation is

n ,
T

∆t
=

2 π

ϕ
(49)

which is not necessarily a whole number. Dependence of n on RC
∆t

is depicted in Fig. 5.

5 “Perpetuum Mobile” Design Guidelines
Let us assume that input data for our design are resistance of the load, R, the power we want
to extract PR, the time step ∆t in which the data ponts are produced, and the number of data
points per period n. The goal of this section is to provide closed form expressions for required
inductance L, capacitance C, and the initial conditions u1(0) and i2(0).

First, according to (46), the inductance is given by

L = R∆t. (50)

To simplify the notation, let us introduce an auxiliary variable a as

a , tanϕ = tan
2π

n
. (51)

Solving (48) in terms of a over RC
∆t

provides the expression for the capacitance

C =
∆t

R

√
a2 + 1 + a2 + 1

2 a2
. (52)

Since the power on R is

PR =
V 2

0

2R
(53)

required initial condition for the capacitor voltage to provide

uR, k = V0 cos (k ϕ) (54)

is
u1(0) = V0 =

√
2RPR (55)

while the initial current of the inductor is

i2(0) = −V0

R
= −

√
2PR

R
. (56)

The things left to do to design and verify the “perpetuum mobile” are to plug in figures and to
run the simulation.
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Figure 5: Period number.

6 Simulation Results
To illustrate proposed “perpetuum mobile” design technique, which unfortunately works only in
simulation, the analytical example of Fig. 1 with the response given by (17) and (18) is simulated
applying (31) with ∆t = 10µs, resulting in n = 44.39, using the same initial conditions,
u1, 0 = 10V and i2, 0 = −1A. The simulation results for the state variables are presented in Fig.
6, where dotted lines represent the analytical solution of Fig. 2. In contrast to the exact solution,
the simulation result does not vanish and preserves a constant amplitude. Corresponding
diagrams of power are presented in Fig. 7. The simulation results provides average power flow
to the load of

PR = 5.025W (57)

which is supported by the power provided by the capacitor model

PC = −2.512W (58)

and the inductor model
PL = −2.512W. (59)

This “justifies” the “perpetuum mobile” by simulation.

7 Conclusions
In this document, instability of the forward Euler integration rule is utilized to construct a per-
petual motion machine, which is verified by simulation, and unfortunately, only by simulation.
The example is used to illustrate that fundamentally wrong conclusions could be deduced if
simulation methods are applied without thorough understanding.
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Figure 6: State variables: solid line — numerical solution; dotted line — exact solution.
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Figure 7: Power: solid line — numerical solution; dotted line — exact solution.
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