Conference paper Open Access

Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels

Galke, Lukas; Mai, Florian; Vagliano, Iacopo; Scherp, Ansgar


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Recommender Systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Neural Networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Learning from implicit feedback</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Adversarial Autoencoders</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Multi-modal</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Sparsity</subfield>
  </datafield>
  <controlfield tag="005">20190409140424.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">© Lukas Galke | ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in UMAP '18- Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, http://dx.doi.org/10.1145/3209219.3209236.</subfield>
  </datafield>
  <controlfield tag="001">1313577</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">8-11 July, 2018</subfield>
    <subfield code="g">UMAP 2018</subfield>
    <subfield code="p">3</subfield>
    <subfield code="a">User Modeling, Adaptation and Personalization</subfield>
    <subfield code="c">Singapore, Singapore</subfield>
    <subfield code="n">Personalized Recommender Systems III</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kiel University</subfield>
    <subfield code="a">Mai, Florian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ZBW -- Leibniz Information Centre for Economics</subfield>
    <subfield code="0">(orcid)0000-0002-3066-9464</subfield>
    <subfield code="a">Vagliano, Iacopo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Kiel University</subfield>
    <subfield code="0">(orcid)0000-0002-2653-9245</subfield>
    <subfield code="a">Scherp, Ansgar</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">747024</subfield>
    <subfield code="z">md5:6630217358dbe7e058b894129f29b21a</subfield>
    <subfield code="u">https://zenodo.org/record/1313577/files/GalkeMaiVaglianoScherp-AAE-Recommender.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://www.um.org/umap2018/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-07-11</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1313577</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Kiel University</subfield>
    <subfield code="0">(orcid)0000-0001-6124-1092</subfield>
    <subfield code="a">Galke, Lukas</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">693092</subfield>
    <subfield code="a">Training towards a society of data-savvy information professionals to enable open leadership innovation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We present multi-modal adversarial autoencoders for recommendation and evaluate them on two different tasks: citation recommendation and subject label recommendation.&amp;nbsp; We analyze the effects of adversarial regularization, sparsity, and different input modalities.&amp;nbsp; By conducting 408 experiments, we show that adversarial regularization consistently improves the performance of autoencoders for recommendation.&amp;nbsp; We demonstrate, however, that the two tasks differ in the semantics of item co-occurrence in the sense that item co-occurrence resembles relatedness in case of citations, yet implies diversity in case of subject labels.&amp;nbsp; Our results reveal that supplying the partial item set as input is only helpful, when item co-occurrence resembles relatedness.&amp;nbsp; When facing a new recommendation task it is therefore crucial to consider the semantics of item co-occurrence for the choice of an appropriate model.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3209219.3209236</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
55
62
views
downloads
Views 55
Downloads 62
Data volume 46.3 MB
Unique views 52
Unique downloads 60

Share

Cite as