
1 
 

 1 

CORAL and Nano-OFAR: Quantitative feature – activity relationships (QFAR) 2 

for bioavailability of nanoparticles (ZnO, CuO, Co3O4, and TiO2) 3 

 4 

Alla P. Toropova1*, Andrey A. Toropov1, Danuta Leszczynska2, Jerzy Leszczynski3 5 

 6 

1IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 7 

20156 Milan, Italy 8 

2Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental 9 

Engineering, Jackson State University, 1325 Lynch Street, Jackson, 10 

MS 39217-0510, USA 11 

3Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, 12 

Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17910, Jackson, 13 

MS 39217, USA 14 

 15 

Published version of this paper could be find here https://doi.org/10.1016/j.ecoenv.2017.01.054 16 

Ecotoxicology and Environmental Safety, Volume 139, May 2017, Pages 404-40 17 
 18 

 19 

*) Corresponding author 20 

Alla P. Toropova 21 

Laboratory of Environmental Chemistry and Toxicology,  22 

IRCCS - Istituto di Ricerche Farmacologiche Mario Negri,  23 

Via La Masa 19, 20156 Milano, Italy 24 

Tel: +39 02 3901 4595  25 

Fax: +39 02 3901 4735  26 

Email: alla.toropova@marionegri.it 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

https://doi.org/10.1016/j.ecoenv.2017.01.054
https://www.sciencedirect.com/science/journal/01476513
mailto:alla.toropova@marionegri.it


2 
 

 35 

Abstract 36 

 37 

Quantitative feature – activity relationships (QFAR) approach was applied to prediction of 38 

bioavailability of metal oxide nanoparticles. ZnO, CuO, Co3O4, and TiO2 nanoxides were 39 

considered. The computational model for bioavailability of investigated species is asserted. The 40 

model was calculated using the Monte Carlo method. The CORAL free software 41 

(http://www.insilico.eu/coral) was used in this study. The developed model was tested by 42 

application of three different splits of data into the training and validation sets. So-called, quasi-43 

SMILES are used to represent the conditions of action of metal oxide nanoparticles. A new 44 

paradigm of building up predictive models of endpoints related to nanomaterials is suggested. The 45 

paradigm is the following “An endpoint is a mathematical function of available eclectic data 46 

(conditions)”. Recently, the paradigm has been checked up with endpoints related to metal oxide 47 

nanoparticles, fullerenes, and multi-walled carbon-nanotubes. 48 

 49 

Keywords: QSAR; nano-QSAR; QFAR; quasi-SMILES; CORAL free software 50 

 51 

1. Introduction 52 

There are two types of works dedicated to searching for predictive models for endpoints related to 53 

nanomaterials. The first type is reviews of models, approaches, and paradigms suggested in the 54 

literature related to nanomaterials and endpoints in most generalized form (Posner, 2009; Puzyn et 55 

al., 2009; Gottschalk et al., 2013; Vanli et al., 2014; Ying et al., 2015; Winkler, 2016).  Works of 56 

the second type are detailed description of fresh predictive models of defined endpoints related to 57 

defined nanomaterials (Toropov and Leszczynski, 2006; Sayes and Ivanov, 2010; Liu et al., 2013; 58 

Kleandrova et al., 2014a,b; Singh and Gupta, 2014; Melagraki and Afantitis, 2014; Luan et al., 59 

2014; Speck-Planche et al., 2015). Both mentioned types of the researches are necessary and useful. 60 

In the case of works of second type, the results should be comfortable from point of view of 61 

“potential users”.  This means that the results should be simple, clear, and reproducible. The 62 

absence of reliable and systematic experimental data on endpoints related to nanomaterials was and 63 

is the limitation for this research field. This circumstance leads to the paradoxical situation: the total 64 

number of works of the first type is larger than the number of works of second type.  65 

In addition, though importance of nanomaterials for basic research, industry, and practical 66 

applications has been growing over the years their physicochemical and biochemical data has not 67 

yet been properly evaluated and collected into large databases. This causes critical complications 68 

http://www.insilico.eu/coral
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and challenges for building up predictive models for nanomaterials’ endpoints. Traditional 69 

quantitative structure – activity relationships (QSARs) related to endpoints of “standard” substances 70 

are aimed to predict endpoint as a mathematical function of the molecular structure. Dissimilarly, 71 

the quantitative feature - activity relationships (QFARs) are based on eclectic information (Toropov 72 

et al., 2015, 2016; Toropov and Toropova, 2015). The eclectic information includes description of 73 

all available conditions and circumstances (physicochemical, biochemical, medicinal ones).   74 

Simplified molecular input-line entry system (SMILES) are lines of symbols, which are 75 

representing the molecular structure (Toropov et al., 2015; Toropov and Toropova, 2015a,b; 76 

Toropova et al.,  2015). So-called quasi-SMILES being analogies of SMILES are representation of 77 

the available eclectic information by similar lines of symbols. The CORAL software has been 78 

developed and utilized to build up QSAR models for endpoints of standard substances as a 79 

mathematical function of the molecular structure represented by SMILES. Recently the above-80 

mentioned quasi-SMILES have been adapted for applications to nanomaterials. They can be utilized 81 

to build up models for endpoints of nanomaterials as a mathematical function of the eclectic 82 

information (Toropov et al.,  2015; Toropov and Toropova, 2015a,b; Toropova et al.,  2015).  83 

The ISA-TAB-NANO has been suggested as a possible way to extract data sets to build up “nano-84 

QSAR” (Oksel et al., 2015). However, the extraction according to principle 85 

Investigation/Study/Assay being a fundamental idea remains far from practice, whereas quasi-86 

SMILES give possibility to build up “nano-QFAR” based on eclectic available data sets (Toropova 87 

et al., 2014; Toropov and Toropova, 2014; Toropov and Toropova, 2015a,b; Toropova et al., 2015; 88 

Toropova et al., 2016; Toropov et al., 2016). In addition the possibility of integration of small data 89 

sets into united system has been demonstrated (Toropov and Toropova, 2015a,b). In fact, the quasi-90 

SMILES is a flexible tool to build up predictive models for results of experimental works.   91 

Building up QFAR model for bioavailability of metal oxide nanoparticles to E. coli using the 92 

CORAL software is the aim of this work. 93 

 94 

2. Method 95 

2.1. Data 96 

The bioavailability of metal ions influences nanotoxicity of photocatalysts (Li et al.,  2012; Hwang 97 

et al.,  2012). Therefore, the data on bioavailability indicates the level of toxicity. The experimental 98 

data on the bioavailability (%), adopted for this study, is taken from the literature (Dasari et al.,  99 

2013). Table 1 contains details of translation of the experimental conditions (features) into quasi-100 

SMILES (Toropov et al.,  2015). 101 

 102 
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2.2. Optimal descriptors 103 

Optimal descriptors are calculated with quasi-SMILES as the following: 104 

)(*)*,(  kSACWNTDCW                                                                  (1) 105 

where SAk is attribute of qiasi-SMILES; the CW(SAk) represents correlation weight of SAk. The 106 

numerical data on the CW(SAk) are calculated with the Monte Carlo method. Threshold (T) and the 107 

number of epochs (N) are parameters of the Monte Carlo optimization. The  T* and N* are values of 108 

the above-mentioned parameters which provide preferable statistical quality for the calibration set 109 

(Toropov et al.,  2015; Toropov and Toropova, 2015a,b; Toropova et al.,  2015).  Having the 110 

numerical data on the CW(SAk) one can calculate DCW(T*,N*) for all quasi-SMILES. The next step 111 

involves application of the quasi-SMILES of the training set to build up bioavailability model: 112 

 113 

Bioavailability (%) = C0 + C1*DCW(T*,N*)                                                       (2) 114 

 115 

After development of the model one more step is required. The model calculated with Eq.2 should 116 

be checked up with validation set (i.e. with quasi-SMILES which are not involved in building up 117 

the model). 118 

 119 

3. Results and Discussion 120 

 121 

The statistical characteristics of a model depend on the splitting of experimental data into three sets: 122 

training, calibration, and validation. Here three different splits were examined. The described 123 

approach based on quasi-SMILES (Table 1) gives the following models: 124 

 125 

Bioavailability (%)  =-13864.0 (±1517.1) + 4617.3 (±504.9) * DCW(1,4)                          (3) 126 

Bioavailability (%)  =    -9640.6 (±948.4) + 3218.1 (±316.3) * DCW(1,3)                          (4) 127 

Bioavailability (%)  =-15153.5 (±1700.9) + 5046.3 (±566.0) * DCW(1,5)                          (5) 128 

 129 

Each model is characterized by different statistical characteristics. Table 2 displays obtained 130 

statistical characteristics of these models for three splits. The details including experimental and 131 

calculated values of the bioavailability are given in the Table 3.  In addition, Table 3 contains  three 132 

splits of the experimental data into the training, calibration and validation sets. It should be noted, 133 

that the prevalence of attributes in the training and calibration sets is important indicator of quality 134 

of a selected split. Apparently, the frequency of features of quasi-SMILES in the training, and 135 

calibration sets should be as large as possible (Toropova et al., 2014; Toropov and Toropova, 2014; 136 
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Toropov and Toropova, 2015a,b). Of course, this is correct, also, for the validation set.  Table 4 137 

contains the numerical data on the correlation weights of attributes of quasi-SMILES calculated by 138 

the Monte Carlo technique.  139 

One can see from the data presented in the Table 3 that the number of quasi-SMILES available for 140 

the QFAR analysis is twenty-four, i.e. it is limited. Consequently, the prevalence of features in the 141 

training and calibration sets is considerably different for examined splits. This leads to considerable 142 

difference of the predictive potential of the models. Unfortunately, this is disadvantage of models 143 

for small data sets (Toropova et al., 2014).  Nevertheless, in the case of increase of available data 144 

(the total number of available quasi-SMILES), the statistical characteristics of the CORAL models 145 

becomes more stable (Toropova et al., 2015). 146 

Hence, the suggested model has predictive potential confirmed for three random splits. Thus, on the 147 

one hand, the predictive potential of the approach based on the quasi-SMILES is confirmed; on the 148 

other hand, the model can be extended and generalized only based on feedback mechanism with the 149 

results of experiments (i.e. with increase of the number of available quasi-SMILES).  150 

In fact, the results of experiments related to various endpoints of nanomaterials should involve ideas 151 

derived from theoretical and computational models of the endpoints and, vice versa the developers 152 

of computational models should assure that they include in their models all available eclectic details 153 

of the experimental work. Thus, the application of quasi-SMILES is one of the possible ways to 154 

organize dialog between the experimentalists and the developers of predictive models. 155 

The possibility to build up integrated models for congeneric datasets is attractive advantage of 156 

models based on quasi-SMILES (Toropov and Toropova, 2015a,b). For example, modification of 157 

Table 1 if additional data become available is an non complex extension of “Cryptography” list. 158 

The development of models based on quasi-SMILES obey the OECD principles for validation 159 

QSAR models (OECD, 2007). 160 

Finally, the quasi-SMILES can be used as a tool for the practical realization of the ISA-TAB-161 

NANO conception (Oksel et al., 2015), i.e. the standardization of available data into the format 162 

"Investigation - Study - Assay". 163 

 164 

Conclusions 165 

 166 

The predictive model for bioavailability of four metal oxides nanoparticles is built up using the 167 

QFAR. The CORAL software based on the Monte Carlo method was applied to develop three 168 

models for different random splits of available eclectic data represented by described quasi-169 

SMILES (Table 1) into the training, calibration, and validation sets. One can see that representation 170 
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of experimental conditions by quasi-SMILES provides statistically robust predictive models of the 171 

investigated endpoint (Table 2). The methodological attraction of paradigm "Endpoint is a 172 

mathematical fucntion of eclectic data (conditions)" is confirmed. 173 

 174 
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 275 

Table 1 276 

The scheme of translation of the experimental conditions and bioavailability (%) into quasi-277 

SMILES and bioavailability   278 

 

Experimental conditions and 

bioavailability 

 

 

“Cryptography” 

 

Quasi-SMILES vs bioavailability 

 

 Zn2+ Light  LC50 79.64 

Cu2+ Light  LC50 75.77 

Co2+ Light  LC50 1.07 

Ti2+ Light  LC50 9.21 

Zn2+ Light  LC25 16.21 

Cu2+ Light  LC25 66.03 

Co2+ Light  LC25 1.48 

Ti2+  Light  LC25 13.95 

Zn2+  Light  LC10 21.70 

Cu2+  Light  LC10 42.39 

Co2+  Light  LC10 2.55 

Ti2+  Light  LC10 31.53 

Zn2+  Dark  LC50 15.63 

Cu2+  Dark  LC50 9.12 

Co2+  Dark  LC50 0.66 

Ti2+  Dark  LC50 2.39 

Zn2+  Dark  LC25 10.10 

Cu2+ Dark  LC25 15.01 

Co2+  Dark  LC25 0.71 

Ti2+ Dark  LC25 0.56 

Zn2+  Dark  LC10 9.49 

Cu2+ Dark  LC10 18.03 

Co2+  Dark  LC10 0.43 

Ti2+ Dark  LC10 0.52 
 

 

 

 

  

 

 

 

Zn2+ =  %11 

Cu2+ = %12 

Co2+ = %13 

Ti2+  =  %14 

 

Light = %20 

Dark = %30 

 

LC50 = %50 

LC25 = %25 

LC10 = %10 

 

1 %11* %20  %50 79.64 

2 %12 %20  %50 75.77 

3 %13 %20  %50 1.07 

4 %14 %20  %50 9.21 

5 %11 %20  %25 16.21 

6 %12 %20  %25 66.03 

7 %13 %20  %25 1.48 

8 %14 %20  %25 13.95 

9 %11 %20  %10 21.70 

10 %12 %20  %10 42.39 

11 %13 %20  %10 2.55 

12 %14 %20  %10 31.53 

13 %11 %30  %50 15.63 

14 %12 %30  %50 9.12 

15 %13 %30  %50 0.66 

16 %14 %30  %50 2.39 

17 %11 %30  %25 10.10 

18 %12 %30  %25 15.01 

19 %13 %30  %25 0.71 

20 %14 %30  %25 0.56 

21 %11 %30  %10 9.49 

22 %12 %30  %10 18.03 

23 %13 %30  %10 0.43 

24 %14 %30  %10 0.52 
 

*) In contrast to previous works where quasi-SMILES were defined using different symbols and 279 

digits in this study quasi-SMILES are constructed using denomination of presence cycles for 280 



11 
 

molecules which contain ten and more cycles (Weininger, 1988;  Weininger et al., 1989; Weininger, 281 

1990). This gives possibility (i) to avoid wrong interpretation of symbols by the CORAL software 282 

(e.g. interpretation of two conditions represented as ‘C’ and ‘L’ as one condition ‘Cl’); and (ii) use 283 

of ninety identifiers for various conditions (i.e. %10, %11, …%99).     284 

 285 

  286 
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 287 

Table 2 288 

The statistical characteristics of developed models for three splits of data into the training, 289 

calibration and validation sets 290 

Split Set n r2 RMSE 

1 Training  13 0.5740 16.5 

 Calibration 5 0.7553 15.5 

 validation 6 0.7587 13.9 

2 Training  14 0.6287 12.6 

 Calibration 5 0.5546 25.9 

 validation 5 0.7481 17.9 

3 Training  14 0.5384 16.3 

 Calibration 5 0.8843 17.7 

 validation 5 0.8967 11.9 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

  301 
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Table 3 302 

Experimental and calculated values of bioavailability  303 

ID Split1 Split2 Split3 Quasi-

SMILES 

Experiment Eq. 3 Eq. 4  Eq. 5 

1 T* T T %11%20%50 79.64 44.9096 33.1803 40.8236 

2 V V C %12%20%50 75.77 57.5662 44.0076 47.9860 

3 T T T %13%20%50 1.07 20.4431 11.3971 12.7975 

4 V V T %14%20%50 9.21 28.2878 26.5923 20.5947 

5 T T T %11%20%25 16.21 36.0448 21.1883 38.5189 

6 T T T %12%20%25 66.03 48.7014 32.0156 45.6813 

7 T T C %13%20%25 1.48 11.5783 -0.5949 10.4928 

8 C C V %14%20%25 13.95 19.4230 14.6003 18.2900 

9 T T T %11%20%10 21.70 28.1326 32.4596 32.7313 

10 C V V %12%20%10 42.39 40.7893 43.2869 39.8937 

11 V T T %13%20%10 2.55 3.6662 10.6763 4.7052 

12 C C C %14%20%10 31.53 11.5108 25.8715 12.5024 

13 T T T %11%30%50 15.63 19.4186 13.5088 17.0777 

14 T T T %12%30%50 9.12 32.0753 24.3361 24.2401 

15 C C V %13%30%50 0.66 -5.0478 -8.2744 -10.9484 

16 T T V %14%30%50 2.39 2.7968 6.9208 -3.1512 

17 V V T %11%30%25 10.10 10.5538 1.5169 14.7730 

18 V V T %12%30%25 15.01 23.2105 12.3441 21.9354 

19 T T T %13%30%25 0.71 -13.9126 -20.2664 -13.2531 

20 T T C %14%30%25 0.56 -6.0679 -5.0712 -5.4559 

21 T T C %11%30%10 9.49 2.6417 12.7881 8.9854 

22 T T T %12%30%10 18.03 15.2983 23.6154 16.1478 

23 C C V %13%30%10 0.43 -21.8248 -8.9951 -19.0407 

24 V V T %14%30%10 0.52 -13.9801 6.2001 -11.2435 

 304 

*) T=training set; C=calibration set; and V=validation set 305 

  306 
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 307 

Table 4 308 

The numerical data on the correlation weights of attributes of quasi-SMILES calculated with the 309 

Monte Carlo technique 310 

SAk         CW(SAk) Prevalence of SAk 

in training set 

Prevalence of SAk 

in calibration set 

DEFECTof SAk
* 

Split 1            

%10 0.99982 3 3 0.0615 

%11 1.00544 5 0 1.0000 

%12 1.00818 3 1 0.0077 

%13 1.00014 3 2 0.0338 

%14 1.00184 2 2 0.0615 

%20 1.00347 6 3 0.0154 

%25 1.00154 5 1 0.0308 

%30 0.99795 7 2 0.0154 

%50 1.00346 5 1 0.0308 

Split 2           

%10 1.00042 6 2 0.0036 

%11 1.00003 3 2 0.0371 

%12 1.00340 5 0 1.0000 

%13 0.99326 2 2 0.0643 

%14 0.99798 4 1 0.0171 

%20 1.00537 6 3 0.0190 

%25 0.99691 3 2 0.0371 

%30 0.99926 8 2 0.0171 

%50 1.00064 5 1 0.0262 

Split 3            

%10 1.00337 4 2 0.0190 

%11 1.00347 5 1 0.0262 

%12 1.00489 4 1 0.0171 

%13 0.99792 3 1 0.0036 

%14 0.99946 2 2 0.0643 

%20 1.00254 7 3 0.0100 
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%25 1.00451 5 2 0.0061 

%30 0.99783 7 2 0.0111 

%50 1.00497 5 1 0.0262 

 311 

*)  The defect of attribute of quasi-SMILES is defined as difference between probability of SAk in 312 

training set and probability of SAk in the calibration set: 313 

)()( kcalibktrainSA SAPSAPDEFECT   314 

If 0)( kcalib SAP then 1SADEFECT  315 


