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ABSTRACT 14 

 15 

A large set of organic compounds (n=906) has been used as a basis to build up a model for the odor 16 

threshold (mg/m3).  The statistical characteristics of the best model are the following: n=523, 17 

r2=0.647, RMSE=1.18 (training set); n=191, r2=0.610, RMSE=1.03, (calibration set); and n=192, 18 

r2=0.686, RMSE=1.06 (validation set). A mechanistic interpretation of the model is  presented as the 19 

lists of  statistical promoters of the  increase and decrease in the odor threshold. 20 
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1. Introduction 35 

 36 

The sense of smell and taste are generally referred as the chemical senses, as they give information 37 

about the chemistry of the environment. From an evolutionary point of view, chemoreception is 38 

generally thought to be one of the most primitive senses that was developed (Nei et al., 2008, Niimura, 39 

2012). The potential of chemicals to impact the human olfactory system and to cause apparent health 40 

effects was detected (Rosenkran and Cunningham, 2003; Orzi et al., 2015). 41 

Coding and processing steps of odor receptor activation system, are in the olfactory bulb, one of the 42 

limbic brain structures where part of the autonomic processes are regulated. Although the sense of 43 

smell is a conscious perception, sensory information from the outer environment are brought by 44 

sensory neurons centrally, where they constantly and unconsciously modulate also the activity of the 45 

motor neurons of the autonomic nervous system. Our response to odors from the external environment 46 

is both voluntary and involuntary and environments quality can be highly degraded by odor pollution 47 

events, causing annoyance and difficulties in public health management. Measuring odor is 48 

fundamental to predict environmental effects on the population, and perception, exposure-response 49 

relationships, play a fundamental role for annoyance in the long-time exposure pathways, making it 50 

enable for risk assessment in this field. 51 

Odor intensity measurements are difficult due to the fact that presently no analytical instrument is 52 

available to measure objectively odor intensity. Sensorial analysis, even performed by trained 53 

assessors, are problematic as there are no fixed reference points and no easy comparison (Sell and 54 

Pybus, 2006) and odor thresholds (the lowest concentration of an odorant that is perceivable by 55 

human nose) are usually measured  (Hoshika et al., 1993) to describe the odor potency of a specific 56 

molecule. 57 

The odor threshold is an important characteristic of a compound from  the ecologic and biochemical 58 

viewpoints too (Hobbs et al., 2001; Zahn et al., 2001; Yan et al., 2015; Hansen et al., 2016).   Volatile 59 

organic compounds are air pollutants that account for a substantial proportion of total pollutant 60 

concentrations (Kumar et al., 2014; Brodzik et al., 2014; Yan et al., 2015). Most of these compounds 61 

can easily cause pungent sensations even on very low concentration (Wu et al., 2015; Abraham et al., 62 

2012, 2016) and their environmental presence are complex to measure (Bianchi et al., 2013) and 63 

difficult to describe (Capelli et al., 2012a). 64 

Because of the interaction between these odorants, mixtures of many negligible odor pollutants can 65 

generate a stronger odor impact (Le Berre et al., 2008). The odor pollution induced by these 66 

substances lowers the quality of life (Palmiotto et al. 2014, Yan et al., 2015), causing potential threats 67 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hoshika%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=8472679
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to human health both from a toxicological point of view (Capelli et al., 2012b) and from a stress-68 

related, psychosocial effect (Blanes-Vidal, 2014). 69 

A substance with low odor threshold in the environment can be associated to a number of odors. Thus, 70 

the ambiguous nature of odorant receptors along with various characteristics of olfactory data has 71 

stimulated search for information about threshold data for odor of various compounds which have  72 

applications in the field of bioscience, food chemistry and environmental pollution (Pal et al., 2014). 73 

Fundamental research has well shown the effect of structural changes of odorant compounds to their 74 

odor threshold values (Takeoka et al. 1995, 1996). For instance, pentyl acetate has the lowest odor 75 

threshold of all the straight chain acetates; however, the addition of a methyl group in the 1-position 76 

caused a 20-fold increase in the odor threshold. Systematic studies to define relationships between 77 

structure and odor thresholds have been carried out on homologous series and isomers of substance 78 

groups (for example see Boelens and van Gemert, 1986). Estimation of such effects is a complex 79 

task: to determine which compounds contribute to the overall apple aroma, long-term analytical 80 

methods should be utilized (ASTM E679 2004). In addition, this estimation involves measurement 81 

of the compound's odor threshold in water (Teranishi et al., 1987).  82 

The odor threshold value is defined by many factors including the temperature, pressure, presence / 83 

absence of other substances and so on. Extraction of all these data is a time-consuming technical 84 

problem. Consequently, development of computational models for the odor threshold is an attractive 85 

alternative. Usually, such models are based on quantitative structure – property / activity relationships 86 

(QSPRs/QSARs).             87 

The QSAR models can also assist in the detection of potential odorant components from large 88 

databases, which reduces the need for time-consuming synthesis and testing a large number of 89 

compounds. Before any substance (pharmaceutical, cosmetic, chemical, etc.) can be brought into the 90 

European market, its  safety  to  human health  and  the environment must be  evaluated.  The 91 

QSPR/QSAR paradigm is now supported by the Registration, Evaluation, and Authorization of 92 

Chemicals (EC  regulation 1907/2006;  EU Regulation, 1223/2009), a legislative initiative of the 93 

European Commission and the Organization for Economic Cooperation and Development (OECD, 94 

2007).               95 

The QSPR/QSAR models are used by the Food and Drug Administration (FDA) (Benigni and Zito, 96 

2004; Valerio Jr, 2011) for minimizing the rate of false negatives and false positives saving 97 

incalculable costs for manufacturers. The Council for International Organizations of Medical 98 

Sciences (CIOMS) (Bankowski and Howard-Jones, 1986) also recommends the QSPR/QSAR 99 

methods  before animal experiments for the advancement of biological knowledge. 100 
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The predictive model for the odor threshold can find applications in many practical aspects: (i) 101 

perfume manufacture; (ii) medicine; (iii) chemical technology; (iv) drug discovery and (v) regulation. 102 

There are attempts to build up QSPR/QSAR for the odor threshold (Xu  et al., 2012; Pal et al., 2014; 103 

Polster and Schieberle, 2015 ). The aim of present work was building up a predictive model for the 104 

odor threshold (mg/m3) using the Monte Carlo method available via the CORAL software (CORAL, 105 

2016). 106 

 107 

2. Method 108 

2.1. Data 109 

The numerical data on the odor threshold (OT) were taken from a large database available (van 110 

Gemert, 1999).  Data distribution does not appear to be unimodal, symmetric. For several odorants, 111 

several OT were available with large differences from average, median and mode values.  For 112 

example for hydrogen sulfide values of 0.23, 0.0042 and 0.012 mg/m3 (average, median and mode 113 

respectively) are obtained indicating not only large OT ranges, but also asymmetrical distributions. 114 

In the present study the average OT values have been used, a classical approach for OT description 115 

(see for example Chemoreception: In Ref. Sell and Pybus, 2006 ).  116 

Three splits, into training, calibration, and validation sets were examined. 117 

 118 

2.2. Optimal descriptors 119 

Optimal descriptors (Toropov and Toropova, 2014, 2015a,b; Toropova and Toropov, 2013, 2014) 120 

which are involved to build up the QSAR model for the  pOT,  (minus decimal logarithm of odor 121 

Threshold) are the following:  122 

)()()()(

)()()(*)*,(

PAIRCWHALOCWNOSPCWBONDCW

SSSCWSSCWSCWNTDCW kkk



 
                (1) 123 

In Eq. 1, the sk, ssk, and sssk are combinations of one, two, and three “SMILES atoms”. The “SMILES 124 

atom” is a fragment of the SMILES notation, which contains one symbol or two symbols, which 125 

cannot be examined separately (e.g. ‘Cl’, ‘Br’, etc.). The CW(sk), CW(ssk),  and CW(sssk ) are 126 

correlation weights of the above-mentioned “SMILES atoms”. The correlation weights are 127 

coefficients, which are used to calculate the descriptor. The numerical data for the correlation weights 128 

are obtained by the Monte Carlo method optimization procedure, which gives maximum correlation 129 

coefficient between endpoint and the optimal descriptor. The BOND, NOSP, HALO, and PAIR are 130 

global attributes of SMILES which reflects the presence of various kinds of chemical bonds (BOND); 131 

the presence of nitrogen, oxygen, sulfur, and phosphorus (NOSP); the presence of halogens, i.e. 132 

fluorine, chlorine, bromine, and iodine (HALO); and presence of various combinations of SMILES 133 
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atoms. The CW(BOND), CW(NOSP), and CW(HALO), and CW(PAIR) are correlation weights of the 134 

global attributes of SMILES. The detailed description of the above- listed local (sk, ssk, and sssk) and 135 

global (BOND, NOSP, HALO, and PAIR) attributes of SMILES is available in the literature 136 

(Toropova et al., 2015) as well as at web site of the CORAL software (CORAL, 2016). 137 

The T is the threshold, i.e. a coefficient used to classify SMILES attributes into two classes (i) rare 138 

or noise; and (ii) active. The rare attributes are blocked (their correlation weights are fixed zero). The 139 

coefficient can be 1, 2,  … , M. The  T* is threshold which gives preferable statistical quality of the 140 

model for the calibration set. The N is the number of epochs of the Monte Carlo optimization.  The 141 

N* is the number which gives preferable statistical quality for the calibration set. The T* and N* are 142 

calculated according to scheme suggested in works (Toropova et al., 2015).  Having the numerical 143 

data for the correlation weights, one can calculate the DCW(T*,N*) for the training set and define 144 

regression parameters C0 and C1 for the following model 145 

*)*,(10 NTDCWCCpOT                                                                           (2) 146 

The predictive potential of the model calculated with Eq. 2 should be checked up with external 147 

validation set (Toropova et al., 2015).   148 

 149 

3. Results and Discussion 150 

 151 

3.1. QSAR models 152 

The Monte Carlo optimization with T* and N* which are selected according to scheme suggested in 153 

work (Toropova et al., 2015) gives the following models: 154 

 155 

pOT =  -5.5431(± 0.0035) +    0.1418(± 0.0001) * DCW(1,22)                                                   (3) 156 

 157 

pOT =  -5.4618(± 0.0036) +    0.1331(± 0.0001) * DCW(1,17)                                                   (4) 158 

 159 

pOT =  -5.5541(± 0.0033) +    0.1527(± 0.0001) * DCW(1,28)                                                   (5) 160 

 161 

Table 1 contains the statistical characteristics of the models for pOT calculated with Eqs. 3-5  162 

[Table 1 around here] 163 

3.2. Mechanistic interpretation 164 

Table 2 contains the list of molecular features, which are statistically stable promoters of increase or 165 

decrease of the pOT. These data selected according to the following principles: (i) molecular features 166 

extracted from SMILES with large prevalence in the training and calibration sets; (ii) molecular 167 
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features which have positive correlation weights for all three runs of the Monte Carlo optimization; 168 

and (iii) molecular features which have negative correlation weights for all three runs of the Monte 169 

Carlo optimization.  170 

One can see, there are stable promoters of the pOT increase related to all distributions. Table 3 171 

contains interpretation of SMILES attributes as a molecular features.  172 

 173 

3.3. Domain of applicability 174 

Building up a model can be accompanied by probabilistic characteristics of the influence of the 175 

parameters and/or conditions upon endpoint (Toropova et al., 2015).  176 

An example of the probabilistic parameter is a statistical defect of an attribute. The defect can be 177 

calculated as the following:                                                                                        178 

)()(

)()(
)(

kCkT

kCkT
k

ANAN

APAP
Adefect




                                                                                        (6) 179 

where PT(Ak) and PC(Ak) are probabilities of attribute Ak in the training and the calibration sets, 180 

respectively; NT(Ak) and NC(Ak) are prevalence of the attribute Ak in the training and the calibration 181 

sets, respectively.  It should be noted if NC(Ak) = 0 then the defectk =1. 182 

The criterion to define the domain of applicability is the following:  SMILES falls into domain of 183 

applicability if defect (SMILES) calculated with Eq. 7  is less than average value of defects of 184 

SMILES over the training set (inequality 8).  185 

)()(  kAdefectSMILESdefect                                                                                       (7) 186 

)(2)( SMILESdefectSMILESdefect                                                                           (8) 187 

The sum of defect(SMILES) is a measure of a distribution defect (DD): 188 


CalibTrain

SMILESdefectDD
&

)(                                                                                                (9) 189 

The suggested criteria (Eqs. 6-9) are calculated with data on the training and calibration sets without 190 

any data on the external validation set. Our hypothesis is: if the first distribution D1 is characterized 191 

by the distribution defect = DD1 and distribution D2 is characterized  by the distribution defect = 192 

DD2, then the distribution D1 is better than distribution D2 if DD1 is smaller than DD2.  193 

The comparison of models from the literature (Pal et al., 2014; Cliff et al., 2011; Xu  et al., 2012; 194 

Hansen et al., 2016 ) shows that the CORAL software can be a satisfactory and useful tool to predict 195 

the odor thresholds for a large variety of organic compounds (Table 4).   196 

Supplementary materials section contains screenshots of the models calculated with the CORAL 197 

software (http://www.insilico.eu/coral). Technical details related to total data set (i.e. three 198 
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distributions into the training, calibration, and validation sets examined in this work as well as 199 

experimental and calculated values of odor threshold) are available on the request.      200 

4. Conclusions 201 

The suggested models for odor threshold have good statistical quality. It must be stressed that odor 202 

measurements are complex, the odor sensitivity in population is lognormally distributed, and the 203 

database used is comprehensive of all data in literature. The additional checking up of the approach 204 

by means of comparison of three different distributions into the training, calibration, and validation 205 

sets confirms the reproduction of the statistical quality for the three random events: i.e. building up 206 

the QSAR model for random splits. The suggested models have mechanistic interpretation via groups 207 

of promoters of increase/decrease for pOT. Finally, the special criteria for domain of applicability 208 

and quality of distribution into the training and validation sets are defined for the approach. Thus, the 209 

approach gives models in accordance with OECD principles (OECD, 2007).   210 

 211 

Software 212 

The CORAL software utilized in this work is free available on the Internet 213 

(http://www.insilico.eu/coral). 214 
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 339 

 340 

Table 1 341 

The statistical characteristics of QSAR models for odor threshold calculated with Eqs. 3-5 342 

 343 

Split ntrain r2
train q2

train strain ncalib r2
calib scalib nvalid r2

valid svalid 

1, Eq.3 523 0.647 0.645 1.18 191 0.610 1.03 192 0.686 1.06 

2, Eq.4 479 0.600 0.597 1.26 214 0.667 1.00 213 0.587 1.08 

3, Eq.5 523 0.644 0.642 1.15 191 0.618 1.16 192 0.664 1.01 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

  351 
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 352 

Table 2 353 

Promoters of increase and decrease for pOT 354 

 355 

split Attribute Ak CW(Ak) 

in run 1 

CW(Ak) 

in run 2 

CW(Ak) 

in run 3 

Frequency 

in training 

set 

Frequency in 

calibration 

set 

Defect(Ak) 

 Promoters of 

pOT increase 

      

1 HALO00000000 3.58826 4.04993 3.72319 466 171 0.0000 

2 HALO00000000 2.47709 2.71629 2.71376 425 190 0.0000 

3 HALO00000000 2.64024 2.09750 2.39838 463 173 0.0000 

1 C...C....... 0.51254 0.48620 0.26053 358 147 0.0002 

2 C...C....... 0.36085 0.44673 0.15952 328 154 0.0001 

3 C...C....... 0.05871 0.10788 0.12833 365 139 0.0001 

1 NOSP01000000 5.32536 5.22168 5.37597 298 123 0.0002 

2 NOSP01000000 5.16421 5.37228 5.15435 277 130 0.0001 

3 NOSP01000000 4.29786 4.00130 4.16129 292 124 0.0002 

1 ++++O---B2== 1.33859 1.32759 1.12530 282 108 0.0001 

2 ++++O---B2== 0.52102 0.65489 0.50825 260 111 0.0001 

3 ++++O---B2== 1.73585 1.60045 1.50177 272 111 0.0002 

 Promoters of 

pOT decrease 

      

1 (........... -1.32289 -1.28659 -1.27594 369 128 0.0001 

2 (........... -0.97827 -1.12017 -1.23431 353 140 0.0002 

3 (........... -1.38277 -1.28759 -1.19665 373 133 0.0000 

1 O........... -2.14641 -2.06157 -2.14781 351 133 0.0001 

2 O........... -1.51134 -1.61069 -1.61012 321 144 0.0000 

3 O........... -1.89988 -1.83508 -1.81488 346 137 0.0001 

1 1........... -1.43485 -1.32913 -1.76430 247 65 0.0004 

2 1........... -0.69631 -0.79625 -0.70094 231 70 0.0005 

3 1........... -1.90238 -1.83671 -1.95808 247 65 0.0004 

1 ++++N---B2== -3.45368 -3.42215 -3.44855 50 7 0.0010 

2 ++++N---B2== -1.90281 -1.90455 -1.90284 40 9 0.0008 

3 ++++N---B2== -3.29875 -3.30467 -3.30140 43 13 0.0003 

 356 

 357 

 358 

  359 
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 360 

Table 3 361 

Interpretation of the promoter of increase and decrease for pOT 362 

 363 

Attribute Ak Comment  

Promoter of pOT increase  

HALO00000000 Absence of F, Cl, Br 

C...C....... Presence of carbon – carbon bonds (sp3) 

NOSP01000000 Presence of oxygen together with absence of nitrogen, sulfur 

and phosphorus 

++++O---B2== Presence of oxygen and double bonds 

Promoter of pOT decrease  

(........... Branching in molecular skeleton 

O........... Presence of oxygen 

1........... Presence of rings 

++++N---B2== Presence of nitrogen and double bond 

 364 

 365 

  366 
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 368 

Table 4 369 

Statistical characteristics of QSAR models for odor threshold from the literature  370 

 371 

Reference Number of 

compounds in 

training set 

Determination 

coefficient for  

training set 

Number of 

compounds in 

validation set 

Determination 

coefficient for 

validation set 

 Cliff et al., 2011 10 0.728 - - 

Xu  et al., 2012 40 0.8012-0.8767 10 0.648-0.7746 

Pal et al., 2014 42 0.809 11 0.813 

Hansen et al., 2016 94 0.74 21  0.77 

 372 

 373 


