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Abstract

Building up of the predictive quantitative structure—property/activity relationships (QSPRs/QSARs)
for nanomaterials usually are impossible owing to the complexity of the molecular architecture of the
nanomaterials. Simplified molecular input-line entry system (SMILES) is a tool to represent the
molecular architecture of “traditional” molecules for "traditional" QSPR/QSAR. The quasi-SMILES
is a tool to represent features (conditions and circumstances), which accompany the behavior of
nanomaterials. Having, the training set and validation set, so-called quantitative feature—property
relationships (QFPRs), based on the quasi-SMILES, one can build up model for zeta potentials of
metal oxide nanoparticles for situations characterized by different features.
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1. Introduction

Quantitative structure—property/activity relationships (QSPR/QSAR) based on different descriptors
are a tool to build up predictive model for endpoints of different substances as a mathematical function
of their molecular structure represented by the molecular graph [1]. Simplified molecular input-line
entry system (SMILES) is a possible alternative of molecular graph for representation of the molecular
structure for the QSPR/QSAR [2,3]. The CORAL software [4] gives possibility to build up
QSPR/QSAR models where the molecular structure is represented by SMILES [5-7].

Intensive research work on the nanomaterials stimulates the search for approaches aimed to predict
physicochemical and biochemical behavior of nanomaterials [8].

However, the “traditional” QSPR/QSAR analysis can solve not all tasks related to nanomaterials,

because
(1) The limited number of “more or less” regular sources of data on nanomaterials are
available for praxis;
(i1) Very complex molecular structure of nanomaterials, as a rule, cannot be represented by
graph or SMILES; and
(i11) Usually, a physicochemical and biochemical experiments are based on analysis of

conditions (dose, irradiation, time of exposure, etc.), in other words, the molecular structure
of nanomaterials sometimes has no influence on an experimental result.
The quasi-SMILES [9-14] is possible way to build up predictive models for nanomaterials. In contrast
to traditional SMILES, quasi-SMILES are representations of conditions. It is to be noted the molecular
structure in principle can be examined as a special kind of conditions, if it is expedient [15].
The development of quantitative feature-property relationships (QFPRs), based on quasi-SMILES, for

zeta potentials of metal oxide nanoparticles is aim of this study.

2. Method

2.1. Data

The numerical data on the zeta potential [mV] of metal oxide nanoparticles are taken from the literature
[16]. The model is a mathematical function of different features of nanoparticles. The features are first,
fifteen metal oxides, and second, four circumstances: (i) Acid (pH 5.6); (ii) Basic (pH 7.4); (ii1) Serum
corona; and (iv) Surfactant corona. Table 1 contains the list of the features above and their
representations in quasi-SMILES. The quasi-SMILES were randomly split into the training (=70%),
calibration (=15%), and external validation (=15%) sets. Three different splits are examined in this

work.

2.2. Optimal descriptors

The model for zeta potentials is the following one-variable correlation

ZP[mV]=C, +C, x DCW/(T*, N*) )



where

The DCW(T* N*) is optimal descriptor obtained by the Monte Carlo method with threshold T* and
the number of epochs of the optimization N*. These values threshold and the number of epochs give
best statistical quality of the model for the calibration set. The Cp and C; are regression coefficients
(intercept and slope). The threshold is a number in order to define rare (noise) components of quasi-
SMILES.

The optimal descriptors are calculated with so-called correlation weights of the features (Table 1)
DCW (T*,N*) = > CW(F,) ©)

The T=T* and N=N* are defining in this work by means of the Monte Carlo calculations with ranges
T=(1,2),and N = (1,100). The CORAL software after calculations with the range above gives T=T*

and N=N*. Having these data one can calculate the model using the Eq. 1.

3. Results and Discussion

Table 2 contains the models of zeta potentials obtained with three different splits into the training,
calibration, and validation sets. One can see, the statistical characteristics of models for different splits
are comparable and enough good (Table 2).

Table 3 contains the correlation weights for three random splits into the training, calibration, and
validation sets, which are utilized to calculate the DCW(T* N*).

Table 4 contains the numerical data on the experimental and calculated zeta potentials of examined
metal oxide nanoparticles together with splits into the training, calibration, and validation sets.
According to OECD principles [17], a predictive model should provide the following information:

(1) a defined endpoint; (ii) an unambiguous algorithm; (iii) a defined domain of applicability; (iv)
appropriate measures of goodness-of-fit, and robustness and predictivity; and (v) a mechanistic
interpretation, if possible.
Endpoint. The models suggested in this work aimed to predict the zeta potential of metal oxide
nanoparticles.

Unambiguous algorithm. The algorithm of building up model with quasi-SMILES is described [9-15]
and moreover, available on the Internet [4].
Domain of applicability. The domain of applicability for model based on quasi-SMILES is described
in the literature [16]. It is to be noted, according the criteria [16] all compounds for split 1 and split 2
fall into domain of applicability, but in the case of split 3 the number of suspected compounds is twenty
four. It is paradox, but statistical characteristics of this model are the best.
Appropriate measures of goodness-of-fit. The statistical measure of the goodness-of-fit used in this
work accumulate traditional criteria [9-15] (i) the n, i.e. the number of quasi-SMILES in training,
calibration, and validation sets; (ii) determination coefficient (r?); (iii) cross-validated discrimination

coefficient (q%); (iv) Y-randomization (°R,?); (v) mean absolute error (MAE); and (vi) Fischer F-ratio.



Mechanistic interpretation. The mechanistic interpretation for suggested model is available via
multifold runs of the Monte Carlo optimization [16] in form of the list of promoters of increase (all
correlation weights are positive) or decrease (all correlation weights are negative) of the endpoints
(Table 5). Thus, the suggested models built up according to the OECD principles [17].

Conclusions

The quasi-SMILES (Table 1) gives possibility to build up predictive model for zeta potential of metal
oxide nanoparticles in the form of quantitative feature-property relationships (QFPRs) similar to
described early QFAR. The approach gives models for zeta potential of metal oxide nanoparticles
according to OECD principles.
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Table 1

List of features utilized to develop model of zeta potentials

Features Components of quasi-SMILES, F;
AgNP %11
AlLO3NP %12
CeO2NP, %13
CeO,NPy %14
Co304NP %15
Cr,O3NP %16
CuONP, %17
CuONPy %18
MgONP %19
NiONP %20
SiONP» %21
TiO2NP, %22
TiO2NPy, %23
ZnONP, %24
ZnONPy %25
Acid (pH 5.6) %31
Basic (pH 7.4) %32
Serum corona %33
Surfactant corona %34

9 Particles, which show no endotoxin contamination [16].

® Particles, for which, sizes were measured by a transmission electron microscopy [16].




Table 2

The statistical characteristics of models for zeta potentials of metal oxide nanoparticles

Split 1

ZP = -23.51(+ 0.2275) +

9.857(+ 0.1265) * DCW(2,38)

N 2 o2 °RZ | MAE* [ F
Training set 40 0.7671 | 0.7451 | 0.7573 | 6.54 125
Calibration set 10 0.8495 0.7979 | 116
Validation set 10 0.7806 7.57
Split 2
ZP =-32.55 (+ 0.2687) + 9.020 (+ 0.1421) * DCW(2,11)
N r? 0 °Ry? MAE* F
Training set 38 0.7463 | 0.7186 | 0.7370 | 7.34 106
Calibration set 11 0.8454 0.7967 | 11.2
Validation set 11 0.8996 6.95
Split 3
ZP =-23.10 (+ 0.2896) + 8.660 (+ 0.1343) * DCW(2,21)
N r? 0 °Ry? MAE* F
Training set 37 0.7479 | 0.7207 | 0.7227 | 7.70 104
Calibration set 12 0.9017 0.8726 | 7.29
Validation set 11 0.9270 3.73

*) MAE = mean absolute error




Table 3

Correlation weights for F calculated with the Monte Carlo method

Fi CW(Fy) for split 1 CW(Fy) for split 2 CW(F,) for split 3

%11 -1.37474 -1.06411 -1.43676
%12 0.05999 0.81741 0.68916
%13 1.12672 0.0 0.0
%14 0.0 0.0 -1.12771
%15 0.43488 0.0 0.56367
%16 -0.06176 0.44144 0.0
%17 0.31610 0.68796 0.68661
%18 -1.12092 -1.43917 -1.25086
%19 -0.93269 -0.55774 -1.12432
%20 0.99532 1.68975 1.50188
%21 -0.06738 0.19224 -0.00415
%22 0.0 -0.93714 0.0
%23 0.0 0.37740 0.18268
%24 -0.68621 -0.68748 -0.68836
%25 -1.81062 -1.49800 -1.94168
%31 2.81455 3.62677 3.37730
%32 -0.56032 -0.00004 -0.87314
%33 1.12792 1.62002 1.12691
%34 0.81510 1.55771 0.75275




Table 4

Experimental and predicted values of zeta potential for metal oxide nanoparticles

ID Quasi- Zeta potential
Splitl | Split2 | Split3 SMILES experiment, Splitl Split2 Split3

[mV]
1. T* T T 911%31 -13.7 -9.3187 -9.4306 -6.2999
2. C T T %012%31 16.5 4.8227 7.5410 12.1099
3. T T C %13%31 17.5 15.3370 0.1678 6.1420
4. C C T 9%14%31 10.6 4.2314 0.1678 -3.6237
5. C C C %15%31 14.8 8.5178 0.1678 11.0232
6. T T V %016%31 3.2 3.6227 4.1497 6.1420
7. C V T %17%31 16.5 7.3471 6.3733 12.0878
8. T C T %18%31 5.9 -6.8169 -12.8137 -4.6901
9. T T T 9619%31 -23.6 -4.9617 -4.8631 -3.5943
10. T T T 9620%31 19.8 14.0418 15.4097 19.1478
11, T T T %021%31 -8.4 3.5673 1.9019 6.1060
12. T V \Y %22%31 6.8 4.2314 -8.2853 6.1420
13. \ C T %23%31 9.2 4.2314 3.5720 7.7239
14, T V T %24%31 5.5 -2.5322 -6.0334 0.1810
15. T T T 9625%31 -9.2 -13.6149 -13.3444 -10.6724
16. T T T %011%32 -36.7 -42.5832 -42.1449 -43.1074
17, T T C %12%32 -33.2 -28.4417 -25.1734 -24.6976
18. C C C %13%32 -44.1 -17.9275 -32.5465 -30.6655
19. C C T %14%32 -50.3 -29.0330 -32.5465 -40.4312
20. T V T %015%32 -30.1 -24.7467 -32.5465 -25.7843
21. T T C %16%32 -38.7 -29.6417 -28.5646 -30.6655
22. T T T %17%32 -37.2 -25.9173 -26.3410 -24.7197
23. T T T 918%32 -44.3 -40.0814 -45.5280 -41.4976
24, T T T 9619%32 -25.0 -38.2261 -37.5774 -40.4018
25. T T T %020%32 -18.7 -19.2226 -17.3047 -17.6597
26. T T T %21%32 -21.2 -29.6971 -30.8125 -30.7015
27. \ T \ %22%32 -38.6 -29.0330 -40.9996 -30.6655
28. C T T %23%32 -39.5 -29.0330 -29.1423 -29.0836
29. T T T %24%32 -25.4 -35.7966 -38.7477 -36.6265
30. T T V %025%32 -49.7 -46.8794 -46.0587 -47.4799
31. T T \ %11%33 -29.0 -25.9430 -27.5318 -25.7876
32. T T T 9%12%33 -25.7 -11.8015 -10.5602 -7.3778
33. C V C %13%33 -9.3 -1.2873 -17.9333 -13.3457
34, \ T T 914%33 -27.7 -12.3929 -17.9333 -23.1113
35. T C \ %15%33 -7.1 -8.1065 -17.9333 -8.4645
36. T T T %16%33 -3.5 -13.0016 -13.9515 -13.3457
37. T T T %17%33 -2.0 -9.2772 -11.7279 -7.3999
38. V T C %18%33 -28.5 -23.4412 -30.9149 -24.1778
39. T T T 9019%33 -19.4 -21.5859 -22.9643 -23.0819
40. T T V %020%33 -9.0 -2.5825 -2.6915 -0.3399
41, V \ T %021%33 -8.9 -13.0570 -16.1993 -13.3817
42, V \Y T %22%33 -20.0 -12.3929 -26.3865 -13.3457
43. C C C %23%33 -5.6 -12.3929 -14.5292 -11.7638
44, T V V %24%33 -20.5 -19.1565 -24.1346 -19.3067
45, T T T %025%33 -25.9 -30.2392 -31.4456 -30.1600




46. T T T %11%34 -28.7 -29.0263 -28.0938 -29.0277
47, T T T %12%34 3.6 -14.8848 -11.1222 -10.6179
48. T C C %13%34 -6.3 -4.3706 -18.4953 -16.5858
49, \ \Y \ %14%34 -23.2 -15.4761 -18.4953 -26.3514
50. T C T %15%34 -7.6 -11.1898 -18.4953 -11.7046
51, \Y C \Y %16%34 -12.4 -16.0848 -14.5134 -16.5858
52. T \Y T %17%34 -8.8 -12.3604 -12.2898 -10.6400
53. T T T %18%34 -34.8 -26.5245 -31.4768 -27.4179
54. T T \ %19%34 -20.8 -24.6692 -23.5263 -26.3220
55. \ T C %20%34 -1.7 -5.6657 -3.2535 -3.5800
56. T \Y C %21%34 -13.6 -16.1402 -16.7613 -16.6218
57. \ T C %22%34 -29.2 -15.4761 -26.9484 -16.5858
58. C T T %23%34 -5.8 -15.4761 -15.0912 -15.0039
59. T T T %24%34 -38.9 -22.2397 -24.6965 -22.5468
60. T T T %25%34 -39.7 -33.3225 -32.0075 -33.4001

“) T=training set; C=calibration set; V=validation set




Table 5

Correlation weights of features (Table 1) which are obtained in three probes of the Monte Carlo

optimization
No. | Fu | CW(Fy in Probe 1 | CW(F))in Probe2 | CW(F) in Probe 3
Split 1
1 | %31 4.00353 3.30951 2.93382
2 | %34 0.87901 0.93549 0.87030
3 | %33 1.37451 1.31519 1.18470
4 | %12 0.06225 0.06393 0.18479
5 | %15 0.62977 0.49563 0.56698
6 | %17 0.43362 0.37803 0.44076
7 | %20 1.50042 1.18796 1.12709
8 | %13 1.75228 1.37365 1.31131
1 | %32 -1.25333 -0.68317 -0.56528
2 | %ll -2.25073 -1.68453 -1.30761
3 | %19 -1.43879 -1.06181 -0.81231
4 | %24 -1.06229 -0.80945 -0.56572
5 | %25 -2.87036 -2.19226 -1.75214
6 | %18 -1.75174 -1.31161 -1.00255
7 | %21 -0.19072 -0.12197 -0.00238
Split 2
1 | %33 1.12124 1.74898 1.06399
2 | %34 1.05943 1.68784 1.00199
3 | %31 3.06563 3.62603 2.93972
4 | %I2 0.87204 0.87513 0.87252
5 | %20 1.68824 1.62807 1.62436
6 | %16 0.50118 0.44181 0.49511
7 | %17 0.74632 0.69002 0.68734
8 | %21 0.24753 0.25055 0.24846
9 | %23 0.24882 0.37951 0.37564
1 | %l1 -0.93648 -0.94031 -0.87801
2 | %19 -0.44036 -0.43387 -0.44209
3 | %25 -1.44174 -1.31208 -1.31515
4 | %18 -1.31530 -1.18998 -1.18656
5 | %22 -0.75164 -0.75459 -0.74502
6 | %24 -0.62495 -0.56340 -0.56007
Split 3
1 | %31 3.18329 3.00050 3.05922
2 | %33 1.31239 0.94179 0.99510
3 | %34 1.00352 0.62345 0.62961
4 | %17 0.56672 0.62267 0.68879
5 | %12 0.56091 0.68818 0.68335
6 | %23 0.19051 0.18962 0.25349
7 | %15 0.44093 0.49692 0.56317
8 | %20 1.24744 1.37315 1.43275
1 | %32 -0.31231 -0.81464 -0.81510
2 | %Il -1.18693 -1.31569 -1.30757
3 | %l4 -0.94045 -1.00222 -1.00036
4 | %18 -0.99790 -1.12345 -1.06515




5 %19 -0.93493 -1.05971 -0.99604
6 %24 -0.56076 -0.62248 -0.56177
7 %25 -1.62786 -1.75160 -1.75303




