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Abstract 

Nowadays, nanomaterials are often considered a scientific hit. However, despite the immense 

advantages of nanomaterials, there are studies, which have shown that these materials can also 

harmfully impact both human health and the environment. A preliminary evaluation of the hazards 

related to nanomaterials can be performed using predictive models. The aim of the present study is 

building up a single QSAR model for predicting cytotoxicity of metal oxide nanoparticles on (i) 

Escherichia coli (E. coli) and (ii) human keratinocyte cell line (HaCaT) based on the representation 

of the available eclectic data, encoded into quasi-SMILES. Quasi-SMILES is an analogue and an 

attractive alternative of traditional simplified molecular input-line entry systems (SMILES). In 

contrast to traditional SMILES quasi-SMILES are a tool to represent not only molecular structures, 

but also different conditions, such as physicochemical properties and experimental conditions. The 

statistical quality of the models are average correlation coefficient (r2) and root mean squared error 

(RMSE) for the training set 0.79 and 0.216; the average r2 and RMSE for validation set are 0.90 and 

0.247, respectively. 
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1. Introduction 
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Human exposure to NPs has been in existence for many years. It involves public and occupational 

health exposure to ultrafine particulate air pollution. A broader source of exposure is related to 

nanoparticles which are abundant in nature, as they are produced in many natural processes, including 

photochemical reactions, volcanic eruptions, forest fires, and simple erosion, and by plants and 

animals [1]. 

In more recent years, due to the rapid expansion of nanotechnology, environmental and human 

exposure to engineered nanoparticles has also become unavoidable [2].  

For this reason, the need to gain knowledge about safety and potential hazards of nanoparticles is 

dramatically increasing. Within this context, nanotoxicology has become an emerging discipline. 

However, while the number of nanoparticle types and their applications continues to increase, studies 

to characterize their effects after exposure and to address their potential toxicity are few in 

comparison. In the medical field in particular, nanoparticles are being utilized in diagnostic and 

therapeutic tools to better understand, detect, and treat human diseases. Exposure to nanoparticles for 

medical purposes involves intentional contact and control; therefore, understanding the properties of 

nanoparticles and their effect on the body is crucial before clinical use can occur. The first step 

towards understanding how an agent will react in the body often involves cell-culture studies. 

Compared to animal studies, cellular testing is less ethically ambiguous, is easier to control and 

reproduce, and is less expensive [3]. 

Building up predictive models for endpoints related to nanomaterials is an important task of modern 

natural sciences [4]. Likely, the traditional quantitative structure – property / activity relationships 

(QSPRs/QSARs) [5-13] based on the molecular structure are not able to solve this task.  

The problem with nanomaterials is that a chemical structure is not sufficient to describe them so that 

a range of other unique properties needs to be considered, including particle size, shape and surface 

[14].   

 A model for endpoints related to nanomaterials can be organized in the following form: the measured 

calculated endpoint is a mathematical function of all available eclectic information, which may be (i) 

chemical structure, (ii) atom compositions, (iii) conditions of synthesis/preparation of the 

nanomaterial, (iv) the features of nanomaterials related to their manufacture. This list can be easily 

extended (size, porosity, symmetry, electromechanical properties, etc.). To define a predictive model 

for an endpoint related to nanomaterials the traditional paradigm for QSAR modeling, ‘Endpoint = F 

(molecular structure)’, can be replaced by ‘Endpoint = F (eclectic information)’ [15-19].  

The aim of the present work is an attempt to build up united predictive model for two endpoints : (i) 

cytotoxicity to Escherichia coli and (ii) human keratinocyte cell line (HaCaT) for metal nanoparticles 

using optimal descriptors based on quasi-SMILES.  Quasi-SMILES is a modification of the 



traditional simplified molecular input-line entry systems (SMILES) [20-22] representing eclectic data 

using a string of characters, encoding particular conditions, not of the molecular structure. In fact, the 

aim of the present work can be also defined as an attempt to answer question: “How one should 

organize databases related to nanomaterials in order to extract from these databases satisfactory 

prediction of the behavior for nanomaterials, which were not examined in experiment?” 

 

 

2. Method 

 

2.1. Data  

The endpoint considered for the QSAR analysis was cytotoxicity of metal oxide nanoparticle on 

Escherichia Coli (E. coli) [23] and human keratinocyte cell line (HaCaT) [24], expressed as the 

negative logarithm of half maximal effective concentration (pEC50). pEC50  data (mol/L) were taken 

from the literature (see Table 1). Figure 1 shows the toxicity data for nano-sized metal oxides against 

E.coli and HaCaT cells: pEC50  values on HaCaT are higher in comparison to those obtained from E. 

coli. This trend of toxicity is reversed only for In2O3, SnO2, and TiO2, which are more toxic to HaCaT 

than to E. Coli [25]. 

[Table 1 around here] 

The total set of available data has been split (three times) into the training (n=22), calibration (n=5), 

and validation (n=5) sets. These splits are built up according to principles: (i) these splits are random; 

(ii) the ranges of endpoints are similar for each sub-set (i.e. for the training, calibration, and validation 

set); and (iii) these splits are different. It is possible to notice that there is a good balance of 

cytotoxicity data between the two sets of values. Furthermore, the cytotoxicity ranges are also quite 

similar going from 1.76 to 3.32 in the case of line cell line and in the case of E.coli from 1.74 to 3.45. 

These values are given as pEC50 where EC50 is the cytotoxicity effect observed the dose which 

produces effect on 50% of the cells. 

In fact these endpoints are a mathematical function of the same conditions (same structures of nano 

oxides) and two additional codes (%11 and %12) give possibility to attempt to build up united model 

for these endpoints. The similar approach was used in work [26] for united model of mutagenicity for 

fullerene and multi walled carbon nanotubes (MWCNTs) under different conditions. 

 

2.2. Optimal descriptor 

Optimal descriptors also called ‘quasi-SMILES’, of nanoQSAR analysis were calculated with 

CORAL software [27]. These were built and optimized starting by the coding of an experimental 



condition (in vitro test): HaCaT and E. Coli were encoded as “%11” and “%12” respectively. These 

codes were combined with the traditional SMILES of nano-oxides (see Table 1). The 32 resulting 

combined systems (traditional SMILES- in vitro test) were randomly split into training, calibration 

and validation sets, with similar distribution of endpoint values. 

Optimal descriptors were calculated as follows: 

 

 )(),( kSCWNTDCW                                                                                           (1) 

where  CW(Sk) are the correlation weights for each fragment Sk contained in the quasi-SMILES 

(Table 2). 

[Table 2 around here] 

The correlation weights are calculated using the Monte Carlo optimization method [12-19]. The 

optimization process make use of two parameters: (i) the threshold (T), which is a tool for classifying 

codes as either rare (and thus likely less reliable features, probably introducing noise into the model) 

or not rare features, which are used by the model and labeled as active; and (ii) the number of epochs 

(N), which is the number of cycles (sequence of modifications of correlation weights for all codes 

involved in model development) for the optimization [15-18]. The target function of the optimization 

procedure is the correlation coefficient between cytotoxicity and descriptors calculated with Eq. 1 for 

the training set. However, the process should be stopped when the correlation coefficient for the 

calibration set reach maximum. If the process will be continued after this maximum, the model most 

probably will give the overtraining (i.e. excellent statistical quality for the training set, but poor 

quality for the calibration and for the validation set).  

Thus, the model should be optimized using codition the T=T* and N=N* which give the maximum 

of the correlation coefficient for the calibration set. These T* and N* should be defined from 

computational calculations with T from range {T1, T2, …, Tn } and N from range {1, 2, …, N }. 

Having the correlation weights obtained by described manner, one can calculate with using the Eq. 1 

the optimal descriptor for any system of eclectic conditions and by utilizing the systems of the training 

set build up a model: 

 

pEC50 = C0 + C1*DCW(T*,N*)                                                                                        (2) 

 

The model should be checked up with the calibration set and if the statistical quality is satisfactory, 

then the obtained model should has a predictive potential. The validation set in the described scheme 

of building up models plays role of the final estimator of the predictive potential for Eq. 2. 



Thus, as it was noted above, instead of the traditional QSAR paradigm “Endpoint = F (Molecular 

structure)” the new paradigm “Endpoint = F(Eclectic data)” is suggested.   

 

3. Results and Discussion 

Comparison of suggested approach with models suggested in work [25] has apparent limitations. First 

of all the aim of the above work is to develop nano quantitative toxicity– toxicity relationship (nano-

QTTR) with involving some descriptors of quantum mechanics whereas this work is aimed to develop 

integrated model based on elementary data on molecular structure of metal nano oxides together with 

taking into account objects for their impacts (E. coli and HaCaT). Thus one can note (i) the models 

calculated with Eq. 3, Eq. 4, and Eq. 5 are identical for all thirty two situations of acting of metal 

nano oxides represented by the quasi-SMILES; (ii) the models suggested here do not involve 

additional information (descriptors of quantum mechanics).  

 

3.1. How one can utilize these models?  

How, one should define "input" data and how one should define expected results? 

One should define request as Eclectic data which contain two components: (i) traditional SMILES 

for metal nano-oxide (Table 1); and (ii) code %11 in order to obtain prediction of pEC50 for 

cytotoxicity human keratinocyte cell line (HaCaT) or code %12 in order to obtain pEC50 for 

cytotoxicity to Escherichia coli. 

 

3.2. Predictive models 

 

The described approach gives the following models: 

Split 1 

pEC50 =   1.6840375 (± 0.0214373) +    0.2883483 (± 0.0063152) * DCW(1,15)          (3) 

Split 2 

pEC50 =   1.3816828 (± 0.0300053) +    0.3657955 (± 0.0089238) * DCW(1,15)          (4) 

Split 3 

pEC50 =  -0.0009168 (± 0.0455860) +    0.4622782 (± 0.0074398) * DCW(1,30)          (5) 

 

Table 2 contains the correlation weights CW(Sk) for calculation DCW(T*,N*)  with Eq. 1 Table 3 

contains the statistical characteristics of models for three random splits. One can see that statistical 

characteristics of models for each split are different, but quite good. Table 4 contains an example of 

the DCW(T*,N*) calculation. Table 5 contains the splits into the training, calibration, and validation 



sets together with the numerical data on the experimental and predicted pEC50. Table 6 contains the 

comparison of the statistical quality of models suggested in work [25] and models calculated with 

quasi-SMILES.  

[Table 3 around here] 

[Table 4 around here] 

[Table 5 around here] 

[Table 6 around here] 

 

3.3. OECD principles 

The described approach build up predictive models according to OECD principles (Table 7) [29]. 

[Table 7 around here] 

 4. Conclusions 

The suggested approach gives quite satisfactory models for the eclectic data related to cytotoxicity 

towards Escherichia coli and human keratinocyte cell line (HaCaT) for metal nanoparticles. The 

possibility to build up predictive databases using eclectic data is demonstrated. The quasi-SMILES 

are analogy of the traditional SMILES, but have additional possibility to involve in building up a 

model different conditions. Described actions can be repeated and improved by means of utilization 

available on the Internet the CORAL software [27]. 
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Table 1 

Numerical data on the toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) 

 

No. Nano-oxide Traditional SMILES Additional codes:  

HaCaT=%11 

E. coli=%12 

pEC50 in molar scale 

1.  Al2O3 O=[Al]O[Al]=O %11 1.85 

2.  Bi2O3 O=[Bi]O[Bi]=O %11 2.5 

3.  CoO [Co]=O %11 2.83 

4.  Cr2O3 O=[Cr]O[Cr]=O %11 2.3 

5.  Fe2O3 O=[Fe]O[Fe]=O %11 2.05 

6.  In2O3 O=[In]O[In]=O %11 2.92 

7.  La2O3 O=[La]O[La]=O %11 2.87 

8.  NiO [Ni]=O %11 2.49 

9.  Sb2O3 O=[Sb]O[Sb]=O %11 2.31 

10.  SiO2 O=[Si]=O %11 2.12 

11.  SnO2 O=[Sn]=O %11 2.67 

12.  TiO2 O=[Ti]=O %11 1.76 

13.  V2O3 O=[V]O[V]=O %11 2.24 

14.  Y2O3 O=[Y]O[Y]=O %11 2.21 

15.  ZnO O=[Zn] %11 3.32 

16.  ZrO2 O=[Zr]=O %11 2.02 

17.  Al2O3 O=[Al]O[Al]=O %12 2.49 

18.  Bi2O3 O=[Bi]O[Bi]=O %12 2.82 

19.  CoO [Co]=O %12 3.51 

20.  Cr2O3 O=[Cr]O[Cr]=O %12 2.51 

21.  Fe2O3 O=[Fe]O[Fe]=O %12 2.29 

22.  In2O3 O=[In]O[In]=O %12 2.81 

23.  La2O3 O=[La]O[La]=O %12 2.87 

24.  NiO [Ni]=O %12 3.45 

25.  Sb2O3 O=[Sb]O[Sb]=O %12 2.64 

26.  SiO2 O=[Si]=O %12 2.2 

27.  SnO2 O=[Sn]=O %12 2.01 

28.  TiO2 O=[Ti]=O %12 1.74 

29.  V2O3 O=[V]O[V]=O %12 3.14 

30.  Y2O3 O=[Y]O[Y]=O %12 2.87 

31.  ZnO O=[Zn] %12 3.45 

32.  ZrO2 O=[Zr]=O %12 2.15 

 

 

  



 
 

 

Figure 1  

  

Nanoparticle toxicity data, expressed as pEC50, for E.coli and HaCaT  
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Table 2 

Correlation weights for calculation with Eq. 1 for three random splits 

 

Split 1 Split 2 Split 3 

  

Sk          CW(Sk)     Sk          CW(Sk)     Sk          CW(Sk)     

%11      1.17055 %11      0.92518 %11      1.58993 

%12      2.17144 %12      1.61214 %12      2.14798 

=     -0.55123 =     -0.04516 =      1.07580 

Al     -0.26129 Al      0.56062 Al      0.59662 

Bi      0.95121 Bi      0.97207 Bi      0.92776 

Co      3.16018 Co      2.80291 Co      4.23560 

Cr      0.45955 Cr      0.59633 Cr      0.67787 

Fe          0.0 Fe          0.0 Fe      0.41164 

O     -0.34249 O     -0.30102 O     -0.42509 

In      1.37575 In      1.24544 In      1.34598 

La      1.63282 La      1.25245 La      1.29975 

Ni      3.69871 Ni      2.79766 Ni      3.35802 

V      1.05102 V      1.00488 V      1.31730 

Sb      0.58840 Sb      0.78321 Sb      0.76343 

Si     -0.06530 Si      0.87119 Si      1.06687 

Y      0.77211 Y      0.80024 Y      0.79239 

Sn      0.95754 Sn      1.44623 Sn      1.32284 

Ti     -0.70465 Ti     -0.49905 Ti          0.0 

[      0.25238 [      0.32036 [      0.28833 

Zn      4.21583 Zn      4.00446 Zn      4.19637 

Zr      0.00869 Zr      0.69706 Zr      0.77528 

 

  



 

Table 3 

The statistical characteristics of the models of pEC50 for three splits into the training, calibration, and 

validation sets 

 

  Split 1 Split 2 Split 3 

Training set (n=22) r2 0.79 0.74 0.85 

 q2 0.76 0.69 0.83 

 RMSE 0.230 0.227 0.191 

Calibration set (n=5) r2 0.84 0.90 0.90 

 RMSE 0.248 0.237 0.441 

 2

p

cR *(should be>0.5)  
0.76 0.77 0.70 

 2

mr (should be >0.5) 
0.78 0.79 0.68 

 2

mr (should be<0.2)  
0.062 0.103 0.137 

Validation set (n=5) r2 0.96 0.88 0.87 

 RMSE 0.242 0.257 0.244 

 

*) Description of 
2

p

cR ,
2

mr , and 
2

mr is available in work [28]. 

 

 

 

  



 

Table 4 

An example of the DCW(T*,N*) calculation for Eq. 3 

 

Attributes of quasi-SMILES, Sk      CW(Sk) Frequency 

in training set 

Frequency 

in calibration set 

O      -0.3496 22 5 

=      -0.3017 22 5 

[       0.3244 22 5 

Al      -0.0963 1 1 

[       0.3244 22 5 

O      -0.3496 22 5 

[       0.3244 22 5 

Al      -0.0963 1 1 

[       0.3244 22 5 

=      -0.3017 22 5 

O      -0.3496 22 5 

%11       1.1293 13 1 

 DCW(1,15) = ∑CW(Sk) =          0.58213   

 

pEC50 =   1.6840 +    0.28835 * 0.58213 = 1.851857 

  

 

 

 

 

 

  



 

 

Table 5 

The splits into the training (t), calibration (c), and validation (v) sets. Numerical data on experimental 

and predicted values of the pEC50 

 

1 2 3 Quasi-SMILES Expriment 

[25] 

Eq. 3 Eq. 4 Eq. 5 Model from Ref. 25 

t v v O=[Al]O[Al]=O%11 1.85 1.8519 2.2356 2.2239 1.98 

t t t O=[Bi]O[Bi]=O%11 2.50 2.5146 2.5366 2.5301 2.58 

t t c [Co]=O%11 2.83 3.0169 2.8531 3.2595 2.97 

c c t O=[Cr]O[Cr]=O%11 2.30 2.1537 2.2618 2.2991 2.28 

v c t O=[Fe]O[Fe]=O%11 2.05 1.9075 1.8255 2.0529 2.17 

t t t O=[In]O[In]=O%11 2.92 2.7312 2.7366 2.9168 2.92 

t t t O=[La]O[La]=O%11 2.87 2.8856 2.7418 2.8740 2.83 

c t t [Ni]=O%11 2.49 2.8421 2.8512 2.8538 2.55 

t c v O=[Sb]O[Sb]=O%11 2.31 2.3122 2.3985 2.3782 2.33 

v t t O=[Si]=O%11 2.12 1.8343 2.0199 2.0955 1.99 

t t t O=[Sn]=O%11 2.67 2.1539 2.2302 2.2138 2.24 

t v c O=[Ti]=O%11 1.76 1.7621 1.5187 1.6023 1.90 

t t c O=[V]O[V]=O%11 2.24 2.5135 2.5606 2.8903 2.17 

t t t O=[Y]O[Y]=O%11 2.21 2.3708 2.4109 2.4049 2.15 

t t t O=[Zn]%11 3.32 3.1637 3.2927 3.2414 3.26 

t t t O=[Zr]=O%11 2.02 1.8993 1.9562 1.9607 2.23 

c t t O=[Al]O[Al]=O%12 2.49 2.1970 2.4869 2.4819 2.50 

v c t O=[Bi]O[Bi]=O%12 2.82 2.8598 2.7879 2.7881 2.75 

t c t [Co]=O%12 3.51 3.3621 3.1044 3.5175 3.49 

t t v O=[Cr]O[Cr]=O%12 2.51 2.4988 2.5130 2.5570 2.60 

c v t O=[Fe]O[Fe]=O%12 2.29 2.2526 2.0768 2.3109 2.43 

t t c O=[In]O[In]=O%12 2.81 3.0763 2.9879 3.1747 2.81 

v t v O=[La]O[La]=O%12 2.87 3.2307 2.9930 3.1320 2.95 

t t t [Ni]=O%12 3.45 3.1873 3.1025 3.1118 3.38 

v t t O=[Sb]O[Sb]=O%12 2.64 2.6573 2.6498 2.6361 2.63 

t t v O=[Si]=O%12 2.20 2.1795 2.2712 2.3534 1.98 

t t t O=[Sn]=O%12 2.01 2.4991 2.4815 2.4718 2.15 

c t c O=[Ti]=O%12 1.74 2.1072 1.7700 1.8602 1.92 

t t t O=[V]O[V]=O%12 3.14 2.8587 2.8119 3.1482 2.68 

t t t O=[Y]O[Y]=O%12 2.87 2.7160 2.6622 2.6629 2.83 

c v t O=[Zn]%12 3.45 3.5088 3.5440 3.4993 3.63 

t v t O=[Zr]=O%12 2.15 2.2445 2.2075 2.2186 2.14 

 

 

 

  



Table 6 

Comparison of statistical characteristics of models from work [25] and models calculated with quasi-

SMILES (i.e. Eqs. 3, 4, and 5) 

 

Endpoint n r2 RMSE 2

mr  
2

mr  

pEC50 HaCaT [25] 16 0.88 0.22 0.74 0.04 

pEC50 E. coli  [25] 16 0.91 0.19 0.82 0.09 

pEC50(HaCaT, E.coli), split 1 32 0.80 0.23 0.71 0.04 

pEC50(HaCaT, E.coli), split 2 32 0.80 0.23 0.71 0.11 

pEC50(HaCaT, E.coli), split 3 32 0.80 0.24 0.71 0.08 

 

 

 

 

 

  



 

 

Table 7 

 

The compliance to the OECD principles 

 

No. Definition How a principle is taken into account in this 

work? 

1 a defined endpoint Two endpoints are united into one 

2 an unambiguous algorithm Monte Carlo optimization with available software 

[27] 

3 a defined domain of applicability Probabilistic criteria to define domain of applicability 

according to distribution of available data into the 

training and calibration set [15-19, 27] 

4 appropriate measures of goodness-

of-fit,  robustness and predictivity 

The traditional criteria which are utilized for the 

QSPR/QSAR [15-19, 27] 

5 a mechanistic interpretation, if 

possible 

Available after several runs of the Monte Carlo 

optimization [15-19, 27] 

 

 


