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Abstract 

 

Quantitative structure – activity relationships (QSARs) for the Lowest Observed Adverse 

Effect Level (LOAEL) for a large set of organic compounds (n=565) are suggested. The 

molecular structures of these compounds are represented by Simplified Molecular Input-Line 

Entry Systems (SMILES).  A criteria for the estimation quality of split into the "visible" 

training set (used for developing a model) and "invisible" external validation set is suggested. 

The correlation between the above criterion and the predictive potential of developed QSAR 

model (root-mean-square error for "invisible" validation set) has been detected. One-variable 

models are built up for several different splits into the “visible” training set and “invisible” 

validation set. The statistical quality of these models is quite good. Mechanistic interpretation 

and the domain of applicability for these models are defined according to probabilistic point 

of view. The methodology for defining applicability domain in QSAR modeling with 

SMILES notation based optimal descriptors is presented. 
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1. Introduction 

 

In recent years a considerable efforts have been made to assess genotoxic impurities in 

pharmaceutical products as well as in products in general, because nowadays, people in the 

majority of industrial countries are under the influence by many various substances [1,2]. 

Toxic effects that substance can show are different and they include an adverse alteration of 

morphology, function, capacity, growth, development, or lifespan of a target organism 

distinguished from normal organisms of the same species under defined conditions of 

exposure. It is inconvenient to use human for biochemical and/or medicinal observations and 

therefore databases on potential risk of different substances are gradually increasing with 

experiments on animals [3,4]. However, all experiments with animals have serious ethical 

issues. On the other hand, the definition of endpoints which are the reliable measure of the 

harmfulness of substances is a task which requires long time and expensive equipment [5]. 

Further, chronic studies are designed to obtain a dose-response covering overt toxic effects, 

mild effects (the Lowest Observed Adverse Effect Level, LOAEL), and no effects (the No 

Observed Effect Level, NOAEL). The numerical data on these endpoints (LOAEL and 

NOAEL) are not available for hundreds of thousands or millions of substances which can 

enter the food chain and result in human exposure. For all stated reasons, the risk assessment 

in the absence of sufficient experimental data is a challenge for scientists, so the search for 

mathematical approaches which are capable to estimate the harmfulness of various substances 

(without direct experiment) is an attractive alternative of the experimental definition of risk 

assessment [6,7]. 

 

The quantitative structure – property/activity relationships (QSPRs/QSARs) based on the 

molecular descriptors are a computational tool used to predict various endpoints and they can 

be used for risk assessment [8-11]. Therefore, QSAR models for these endpoints can be useful 

from points of view of medicinal chemistry and ecology [25]. Optimal descriptors give 

possibility to establish specific one-variable QSPR/QSAR model using the Monte Carlo 
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method [12-15]. Recently, the optimal descriptors calculations become available with 

CORAL software [16], where Simplified Molecular Input-Line Entry System (SMILES) [17-

19] were used for representation of the molecular structure [20-24]. 

 

The aim of the present study is the estimation of SMILES-based optimal descriptors 

calculated with the CORAL software as a tool to predict of the LOAEL of various organic 

compounds. Also, in this research the methodology for defining applicability domain in 

QSAR modeling with SMILES notation based optimal descriptors is presented. 

 

2. Method 

 

2.1. Data 

Experimental data on LOAEL (logarithmic scale, mg/kg body weight per day) were taken 

from literature [25]. These values were converted into negative decimal logarithm, i.e. the 

pLOAEL is the endpoint examined in this work. It has to be notated that the database from 

literature contains large number of duplicates. After the extracting of the duplicates, the total 

number of compounds available for the QSAR analysis was 341. The supplementary materials 

contains the lists of compounds involved into building up models (n=341) together with the 

list of duplicates and wrong structures (n=226) from the above mentioned source [25]. Five 

random splits into the training set, invisible training set, calibration set, and the validation set 

were prepared according to the following principles: (i) these splits are random; (ii) these 

splits are not identical (Table 1); and (iii) the number of compounds in the external validation 

set is about 50 or more. 

 

2.2. Optimal descriptors 

 

The Monte Carlo method simulations, based on iterative algorithms, are run for obtaining the 

distribution of an unknown probabilistic entity. Therefore, Monte Carlo method develops 

QSAR model by generating suitable random numbers and observing how that fraction of 

numbers obeys a property or some properties. Further, a numerical correlation weight value 

(CW) is randomly assigned to SMILES-based descriptors in each independent Monte Carlo 

run and for a defined endpoint. Correlation Weights (DCW) for SMILES notation based 

optimal descriptors used in this study are calculated as the following [26]: 
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DCW(T,N) = ∑CW(Sk) + ∑CW(SSk) + ∑CW(SSSk)     (1)  

 

where Sk is SMILES atoms, i.e. one symbol (e.g. ‘C’, ‘N’, ‘=’, etc.) or two symbols which 

cannot be examined separately (e.g. ‘Cl’, ‘Br’, etc.); SSk and SSSk are compositions of two 

and three SMILES atoms, respectively; CW(Sk), CW(SSk), and CW(SSSk) are the correlation 

weights for the Sk, SSk, and SSSk, respectively; the numerical data on the correlation weights 

for above-mentioned SMILES attributes (i.e. Sk, SSk, and SSSk) are calculated by the Monte 

Carlo method where their values should provide the maximum of the target function (TF): 

 

TF= R + R’ – abs( R – R’)×dRw        (2)  

 

where R and R’ are correlation coefficients between pLOAEL and DCW(T,N) for the sub-

training and calibration sets, respectively; dRw (= 0.01) is an empirical constant. The 

parameter T is a threshold that is used to define rare and active SMILES attributes, e.g. T=3 

means that if an attribute ‘x’ is represented only in two (or less) SMILES of the sub-training 

set, the ‘x’ is rare and CW(x) is fixed equal to zero (i.e. the ‘x’ is not involved in the model).  

 

The parameter N is the number of epochs of the Monte Carlo optimization for the TF which 

gives maximum of correlation coefficient between LOAEL and DCW(N,T) for test set. The 

values of T=T* and N=N*, which gives maximum of correlation coefficient between LOAEL 

and DCW(T,N) for the test set are to be preferable in order to build up a model:  

 

pLOAEL = C0 + C1×DCW(T*,N*)        (3) 

 

The “invisible” validation set (no information on these substances is used in the modeling 

process) is involved in the final checking up of the predictive potential of the model 

calculated with Eq. 3. 

 

There are two ways to build up a model using the optimal descriptor: (i) classical method, 

which is based on three sets, namely, training set, calibration set, and validation set; and (ii) 

balance of correlations which is based on four sets, namely, training set, invisible training set, 

calibration set, and validation set. In fact, in the traditional classical method, the training set is 

builder of a model, the calibration set is blocker of the overtraining (situation, where the 

excellent statistical quality of a model for the training set is accompanied by poor statistical 
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quality for an external set). In the case of the balance of correlation the training set distributed 

into active training set and invisible passive training set. The invisible training set is not take 

part in the optimization of the correlation weights, but permanently during of the optimization 

the correlation weights are checking up with the compounds of the invisible training set.  

 

 

2.3. Applicability domain 

 

The applicability domain (AD) is a characteristic of developed QSAR model that can be 

applied for further validation. AD is defined as biological, structural or physico-chemical 

space, knowledge or information on which the model of the training set is developed, and for 

which it is applicable to make predictions for new compounds. QSPR models are more 

reliable if predicted compounds are within the applicability. However, when a compound is 

much dissimilar to all compounds of the modeling set, a reliable prediction of its property is 

uncertain. For reasons stated above defining AD is one of the main aims of all developed 

QSAR models. 

 

The distribution into the “visible” training set (for the described approach the “visible” 

training set contains also invisible training, calibration, and validation sets) and “invisible” 

validation set has apparent influence upon the predictability of a model. A possible measure 

of the quality of the split can be as the following: 

 

)(')( SAPSAPSA
active

Defect                                                                 (4) 

 

where the probability of an attribute SA in the sub-training set P(SA) and the probability of 

SA in the test set or in the calibration set P’(SA)  are calculated by  

 

set

set

N

SAN
SAP

)(
)(                                                                                            (5) 

 

where Nset(SA) is the number of SMILES which contains SA and Nset is the total number of 

SMILES in the set. The defect is calculated with active (not blocked) SA only (Table 1). If the 

defect = 0, the split should be estimated as “ideal” one. But in fact, this situation is not 
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possible. However, the value of the defect calculated with Eq. 4 gives possibility to compare 

various splits. 

 

Summation of  the SAdefect of all active SMILES attributes can be a measure of quality (defect) 

of each SMILES: 

 





SMILESSA

Defectdefect

defect

SASMILES      (6) 

Summation of all SPLITdefect can be a measure of quality (defect) of the split into the visible 

training (calibration) sets and invisible validation set: 

 

 Defectdefect SMILESSplit       (7) 

The probabilistic domain of applicability can be defined via inequality  

defectdefect SMILESSMILES  2      (8) 

 

In other words, a SMILES characterized by the SMILESdefect which is lower than the doubled  

average value of the characteristics over compounds of the training set, the SMILES falls into 

the domain of applicability, otherwise the SMILES is out of the domain of applicability. 

 

In addition, one can compare quality (defect) of different splits into the training, calibration, 

and validation sets: preferable split should be characterized by lower defect calculated with 

Eq. 7. 

 

3. Results and Discussion 

 

The threshold values from 1 to 5 and the number of epochs of the Monte Carlo optimization 

from 1 to 35 were examined for five random splits. Models calculated by the classical scheme 

are: 

Split 1: pLOAEL = -2.2833 (± 0.0030) + 0.047777 (± 0.00013)×DCW(1,28) (9) 

Split 2: pLOAEL = -2.3329 (± 0.0030) + 0.053500 (± 0.00014)×DCW(1,27) (10) 

Split 3: pLOAEL = -2.3364 (± 0.0025) + 0.068323 (± 0.00013)×DCW(1,33) (11) 

Split 4: pLOAEL = -2.2836 (± 0.0038) + 0.037157 (± 0.00013)×DCW(1,11)         (12) 
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Split 5: pLOAEL = -2.1870 (± 0.0026) + 0.056755 (± 0.00013)×DCW(1,30)         (13) 

 

Models calculated by the balance of correlations are: 

Split1: pLOAEL = -2.1723 (± 0.0059) + 0.04342(± 0.0002)×DCW(1,28)  (14) 

Split2: pLOAEL = -2.1450 (± 0.0072) + 0.04850(± 0.0003)×DCW(1,27)  (15) 

Split3: pLOAEL = -2.0593 (± 0.0056) + 0.06366(± 0.0003)×DCW(1,33)  (16) 

Split4: pLOAEL = -2.2813 (± 0.0072) + 0.03791(± 0.0003)×DCW(1,11)  (17) 

Split5: pLOAEL = -1.8400 (± 0.0057) + 0.04618(± 0.0003)×DCW(1,30)  (18) 

 

Applied two approaches gave different models and their statistical characteristics of models 

are represented in Table 2. One can see below, that the balance of correlations gives more 

reliable models for the pLOAEL examined in this work, because these models have better 

statistical characteristics for the validation sets (Table 2). Thus, the training and invisible 

training sets are united in common set in the case of the classical scheme, but these sets are 

acting separately, in the case of the balance of correlations. It has to be noted that statistical 

quality of developed models is quite good (Table 2). The statistical quality of LOAEL model 

suggested in the literature [25] is the following: n=567, r2=0.54, s=0.700. One can see, that 

statistical characteristics of models calculated with the optimal descriptors (Table 2) are 

comparable with the stated model.  

 

There are several ways to classify SMILES attributes: (i) according to transparency of their 

physical meaning (e.g. the transparent interpretations are ‘C...........’ is carbon atoms; 

‘N...........’ is nitrogen atom; ‘#...........’ is triple covalent bond;  but unclear interpretations take 

place for SMILES attributes such as ‘=...3.......’; ‘(...(...(...’; ‘2...(...(...’, etc.); (ii) according to 

their roles as the promoter of an endpoint increase (if correlation weights are stable positive in 

several probes of the Monte Carlo optimization) or vise versa promoter of  an endpoint 

decrease (if correlation weights are stable negative in several probes of the Monte Carlo 

optimization; and (iii) according to their prevalence in training, invisible training, calibration, 

and validation sets. Consequently, one can estimate possible interpretations for SMILES 

attributes which have clear physicochemical (structural) meaning. In the case of the LOAEL 

there are the following stable promoters of the endpoint increase (Table S3): (i) presence of 

oxygen atoms (‘O...........’, ‘O...=.......’, ‘=...O...(...’, etc.); (ii) double bond and branching 

(‘C...(...=...’, ‘=...C...(...’); whereas stable promoters of the endpoint decrease are (i) presence 

of branching (‘(...........’); (ii) presence of  cycles (‘1...........‘). Since used endpoint in this 
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study is pLOAEL SMILES notation based attributes (molecular fragments) defined as 

promoters of an endpoint increase reduces substance’s toxic effect and vice versa SMILES 

notation based attributes defined as promoter of an endpoint decrease will increase 

substance’s toxic effect.  

 

It was expected that a split characterized by smaller value of the defect should give a better 

prediction than a split with the larger defect. Figure 1 shows that there is a correlation 

between the defect of split for the training set and standard error for validation set.  The 

correlation should be checked up with a group of various endpoints, but the first experiment 

(with the LOAEL) one can estimate as successful. 

 

4. Conclusions 

 

The robust QSAR model for LOAEL is suggested. The balance of correlations gives better 

model than the classic scheme. The model has the mechanistic interpretation and a defined 

measurement of the quality of distribution into the training, “invisible” training, calibration, 

and validation set. This measurement gives possibility to check up whether chemicals of the 

external set (which are not involved in building up model) fall into the domain of applicability 

of this model. 
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Table 1. The percentage of identity for splits 1-5 and defects of distributions “Sub-

training / Test” together with defects of distributions “Sub-training / Validation” (indicated by 

bold) 

 

split Set Defect n Split 1 Split 2 Split 3 Split 4 Split 5 

 1 Training 216.9 111 100* 80.9 30.9 39.5 29.9 

 Invisible training   126 100 81.1 38.7 35.8 36.0 

 Calibration  52 100 15.1 24.8 27.3 21.0 

 Validation  52 100 16.8 15.4 27.5 18.9 

2 Training 202.0 114  100 35.0 38.1 33.0 

 Invisible training   118  100 35.9 36.2 30.6 

 Calibration  54  100 16.8 21.4 22.4 

 Validation  55  100 22.4 12.5 18.3 

3 Training 188.9 109   100 33.5 38.4 

 Invisible training   127   100 35.7 36.7 

 Calibration  53   100 19.8 20.8 

 Validation  52   100 16.5 18.9 

4 Training 217.9 112    100 32.4 

 Invisible training   114    100 29.4 

 Calibration  58    100 23.4 

 Validation  57    100 12.6 

5 Training 218.9 110     100 

 Invisible training   124     100 

 Calibration  53     100 

 Validation  54     100 

*) 100
)(*5.0

(%)
,





ji

ji

NN

N
Identity  

where 

jiN ,  is the number of substances which are distributed into the same set for both i-th split and 

j-th split (set =sub-training, calibration, test, validation) ; 

iN    is the number of substances which are distributed into the set for i-th split; 

jN   is the number of substances which are distributed  into the set for j-th split. 
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Table 2. The statistical characteristics of QSAR models for pLOAEL 

 

Training Invisible 

training set 

Calibration 

set 

Validation set 

Split  T* N* r2 q2 s F r2 s r2 s r2 s 

Classical scheme “(Training – calibration) – validation” 

1 1 28 0.71 0.70 0.540 583   0.69 0.420 0.64 0.674 

2 1 27 0.72 0.71 0.540 594   0.64 0.540 0.61 0.628 

3 1 33 0.80 0.79 0.475 921   0.43 0.742 0.62 0.545 

4 1 11 0.62 0.62 0.628 384   0.76 0.524 0.46 0.620 

5 1 30 0.75 0.75 0.517 707   0.70 0.532 0.58 0.704 

Balance of correlations “(Training – invisible training – calibration) – validation” 

1 1 28 0.70 0.69 0.577 255 0.65 0.634 0.78 0.484 0.69 0.699 

2 1 27 0.65 0.64 0.684 210 0.62 0.577 0.67 0.497 0.76 0.501 

3 1 33 0.74 0.73 0.557 308 0.74 0.570 0.69 0.525 0.66 0.493 

4 1 11 0.63 0.61 0.628 209 0.53 0.713 0.79 0.478 0.46 0.630 

5 1 30 0.68 0.67 0.579 231 0.72 0.602 0.77 0.527 0.69 0.632 
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Figure 1. The correlation between the root-mean squared error for the validation set and the 

Splitdefect values calculated with Eq. 7 for five splits examined in this work (r2=0.78). 

 


