Journal article Open Access

Adaptive resolution molecular dynamics technique: Down to the essential

Christian Krekele; Animesh Agarwa; Christoph Junghans; Matej Praprotnik; Luigi Delle Site


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20200120172052.0</controlfield>
  <controlfield tag="001">1312743</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Animesh Agarwa</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Christoph Junghans</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Matej Praprotnik</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Luigi Delle Site</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5427542</subfield>
    <subfield code="z">md5:ec004d8dced6580f6a9fb8d16fe5e28b</subfield>
    <subfield code="u">https://zenodo.org/record/1312743/files/Adaptive resolution molecular dynamics technique - Down to the essential.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-07-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-e-cam</subfield>
    <subfield code="o">oai:zenodo.org:1312743</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">024104</subfield>
    <subfield code="v">149</subfield>
    <subfield code="p">The Journal of Chemical Physics</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Christian Krekele</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Adaptive resolution molecular dynamics technique: Down to the essential</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-e-cam</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">676531</subfield>
    <subfield code="a">An e-infrastructure for software, training and consultancy in simulation and modelling</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We investigate the role of the thermodynamic (TD) force as an essential and sufficient technical ingredient for an efficient and accurate adaptive resolution algorithm. Such a force applied in the coupling region of an adaptive resolution molecular dynamics setup assures thermodynamic equilibrium between atomistically resolved and coarse-grained regions, allowing the proper exchange of molecules. We numerically prove that indeed for systems as relevant as liquid water and 1,3-dimethylimidazolium chloride ionic liquid, the combined action of the TD force and thermostat allows for computationally efficient and numerically accurate simulations, beyond the current capabilities of adaptive resolution setups, which employ switching functions in the coupling region.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1063/1.5031206</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
177
61
views
downloads
Views 177
Downloads 61
Data volume 331.1 MB
Unique views 167
Unique downloads 61

Share

Cite as