STABILITY ISSUES IN PEAK
 LIMITING CURRENT MODE CONTROLLED BUCK CONVERTER

Marija Glišić, Predrag Pejović

the circuit . . . constant current load!

decoupling, switching cell ... also assumed, implicitly!

used to draw i_{L}, to compute $\overline{i_{L}} \ldots$
$v_{\text {OUT }}$ assumed constant over $T_{S} \ldots$ implicitly!

- peak limiting current mode control ...
- known since 1978, C. W. Deisch, "Simple switching control method changes power converter into a current source," PESC'78 [2]
- revisited many times, e.g. in 2001 [6] and 2011 (!) [7]
- still something to say?
- CCM, DCM, stability, $D>0.5$, chaos, ...
- artificial ramp ...
- purpose of the paper to clarify the issues ...
- and this presentation contains more than the paper does!
the waveform, ... DCM assumed!

$$
\overline{i_{L}}=\frac{f_{S} L}{2} I_{m}^{2} \frac{v_{I N}}{v_{O U T}} \frac{1}{v_{I N}-v_{O U T}}
$$

decoupling, averaged model ...

Averaging

$$
C \frac{d \overline{v_{O U T}}}{d t}=\frac{f_{S} L}{2} I_{m}^{2} \frac{\overline{v_{I N}}}{\overline{v_{O U T}}} \frac{1}{\overline{v_{I N}}-\overline{v_{O U T}}}-\overline{i_{O U T}}
$$

overline notation consistent?

$$
\frac{d \overline{v_{O U T}}}{d t}=0 \quad \Rightarrow \quad \text { fixed points }
$$

two fixed points ... (overline notation dropped)

$$
v_{\text {OUT } 1,2}=\frac{v_{I N}}{2} \pm \sqrt{\frac{v_{I N}^{2}}{4}-\frac{f_{S} L I_{m}^{2} v_{I N}}{2 i_{\text {OUT }}}}
$$

and it is not a good practice to have two when you need only one ...
an example... fixed points ...
$v_{I N}=12 \mathrm{~V}, f_{S}=100 \mathrm{kHz}, L=36 \mu \mathrm{H}, I_{m}=0.5 \mathrm{~A}$,
$i_{O U T}=0.2 \mathrm{~A}, C=200 \mu \mathrm{~F}$

$$
\begin{gathered}
\overline{i_{L}}=0.45 \mathrm{~A} \frac{12 \mathrm{~V}}{v_{O U T}} \frac{1}{12 \mathrm{~V}-v_{O U T}} \\
\overline{i_{L}}=i_{O U T}=0.2 \mathrm{~A} \\
\text { fixed points: } \quad v_{O U T}=\left\{\begin{array}{l}
3 \mathrm{~V} \\
9 \mathrm{~V}
\end{array}\right.
\end{gathered}
$$

detour: normalization

$$
\begin{aligned}
& m_{X} \triangleq \frac{v_{X}}{v_{I N}} \\
& j_{Y} \triangleq \frac{f_{S} L i_{Y}}{v_{I N}} \\
& \tau \triangleq \frac{t}{T_{S}}=f_{S} t
\end{aligned}
$$

result:

$$
L \frac{d i_{L}}{d t}=v_{L} \quad \Rightarrow \quad \frac{d j_{L}}{d \tau}=m_{L}
$$

special: $v_{I N} \Rightarrow 1, v_{\text {OUT }} \Rightarrow M, I_{m} \Rightarrow J_{m}, i_{\text {OUT }} \Rightarrow j_{\text {OUT }}$
fixed points ... normalized!

transfer functions ...

$$
\begin{gathered}
\widehat{v}_{\text {OUT }}=H_{I N} \widehat{v}_{I N}+H_{m} \widehat{I}_{m}-H_{\text {OUT }} \widehat{i}_{O U T} \\
H_{I N}=\frac{g_{I N}}{s C-g_{O U T}} \\
H_{m}=\frac{\alpha_{m}}{s C-g_{\text {OUT }}} \\
H_{\text {OUT }}=\frac{1}{s C-g_{O U T}} \\
\text { stability: } g_{O U T}<0, \quad \frac{\partial \overline{i_{L}}}{\partial \overline{v_{O U T}}}<0
\end{gathered}
$$

\ldots previous slide: $2 V_{O U T}-V_{I N}<0, V_{O U T}<V_{I N} / 2$

fixed points, normalized

$$
\begin{aligned}
& V_{\text {base }}=12 \mathrm{~V}, I_{\text {base }}=\frac{10}{3} \mathrm{~A} \\
& J_{m}=0.15, j_{\text {OUT }}= \\
& \qquad M_{1,2}=\frac{1}{2} \pm \sqrt{\frac{1}{4}-\frac{J_{m}^{2}}{2 j_{O U T}}}
\end{aligned}
$$

$$
\text { fixed ponts: } \quad M=\left\{\begin{array}{l}
1 / 4 \\
3 / 4
\end{array}\right.
$$

Linearization

$$
\begin{gathered}
C \frac{d \overline{v_{O U T}}}{d t}=\frac{f_{S} L}{2} I_{m}^{2} \frac{\overline{v_{I N}}}{\overline{v_{O U T}}} \frac{1}{\overline{v_{I N}}-\overline{v_{O U T}}} \\
s C \widehat{v}_{O U T}=g_{I N} \widehat{v}_{I N}+g_{\text {OUT }} \widehat{v}_{O U T}+\alpha_{m} \widehat{I}_{m}-\widehat{i}_{O U T} \\
g_{I N}=\frac{\partial \overline{i_{L}}}{\partial \overline{v_{I N}}}=-\frac{f_{S} L I_{M}^{2}}{2\left(V_{I N}-V_{O U T}\right)^{2}} \\
g_{O U T}=\frac{\partial \overline{i_{L}}}{\partial \overline{v_{O U T}}}=\frac{f_{S} L I_{M}^{2} V_{I N}\left(2 V_{O U T}-V_{I N}\right)}{2 V_{O U T}^{2}\left(V_{I N}-V_{O U T}\right)^{2}} \\
\alpha_{m}=\frac{\partial \overline{i_{L}}}{\partial \overline{I_{m}}}=\frac{f_{S} L I_{M} V_{I N}}{V_{O U T}\left(V_{I N}-V_{O U T}\right)}
\end{gathered}
$$

fixed points, once again ... what's going on?

- $v_{O U T}$ assumed constant over T_{S}
- want to know mapping $i_{L}(0) \rightarrow i_{L}\left(T_{S}\right)$
\ldots knowing $I_{m}, v_{I N}, v_{O U T}, f_{S}, L \ldots$
\ldots or just J_{m} and $M ?(5 \rightarrow 2)$
- $\overline{i_{L}}(n) \triangleq \frac{1}{T_{S}} \int_{(n-1) T_{S}}^{n T_{S}} i_{L}(t) d t$ is an auxiliary (but important!) result
- normalization is useful here!!!
three cases, again ... case 1 , no switching interval

three cases, again ... case 3, discontinuous conduction interval

Basins of Attraction

three cases, again ... case 2 , continuous conduction interval

analytical...

$$
\begin{aligned}
& j_{L}(1)\left(j_{L}(0), M, J_{m}\right)=\left\{\begin{array}{c}
1-M+j_{L}(0), \\
\text { if } j_{L}(0)<J_{m}+M-1 \\
\frac{1}{1-M} J_{m}-M-\frac{M}{1-M} j_{L}(0), \\
\text { if } J_{m}+M-1<j_{L}(0) \\
\text { and } \\
j_{L}(0)<\frac{J_{m}}{M}+M-1
\end{array}\right. \\
& 0, \\
& \text { if } \frac{J_{m}}{M}+M-1<j_{L}(0)
\end{aligned}
$$

... similar for joUT ...
trajectory of $v_{O U T} \cdots$

actually happens ..

supposed ...

and we have it analytical . . . in the paper! (boring)

Limit Cycles

- the problem begins when the converter would enter CCM for $D>1 / 2$
- supposed limit cycle is unstable!
- but the converter operates in a stable limit cycle, regardless our assumptions ...
- ... it happened to be period-2 DCM ...
- ... and here the mess starts ...
actual...

iterate over $J_{m} \ldots$ not in the paper!

iterate over $J_{m} \ldots$ not in the paper!

iterate over $J_{m} \ldots$ not in the paper!

DCM, period number, $n=1$, not in the paper!

DCM, period number, $n=3$, not in the paper!

important: operating mode chart ... not in the paper!

iterate over $J_{m} \ldots$ not in the paper!

DCM , period number, $n=2$, not in the paper!

DCM, period number, $n=4$, not in the paper!

DCM , period number, $n=5$, not in the paper!

DCM, period number, $n=7$, not in the paper!

DCM, period number, $n=9$, not in the paper!

period number, in color, ... not in the paper!

DCM, period number, $n=6$, not in the paper!

DCM , period number, $n=8$, not in the paper!

DCM, period number, $n=10$, not in the paper!

stability ... not in the paper!

- buck converter analyzed, PLCMC applied
- decoupling (in reversed order):

1. "averaged" model, linearized later on ...
2. "discrete time" model

- stability:

1. stability of the averaged model
2. limit cycle stability (stability of the discrete time model)

- limit cycle instability:
. occurs in would-be CCM for $D>1 / 2$

2. results in sensitive small-signal parameters
3. affects averaged model stability!

- analytical techniques, models, normalization ...

Conclusions, 3

Conclusion

- in this presentation, generalized over J_{m}, the remaining degree of freedom, along with M, completeness achieved
- important:

1. occurrence of period- n modes when assumed period-1 CCM has unstable limit cycle, for $D>1 / 2$
2. both period- n CCM and period- n DCM exist

- charts:
. chart of modes
chart of periodicity (chart of n)
chart of stability

