Conference paper Open Access

A Just Noticeable Difference Subjective Test for High Dynamic Range Images

Ahar, Ayyoub; Mahmoudpour, Saeed; Van Wallendael, Glenn; Paridaens, Tom; Lambert, Peter; Schelkens, Peter

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.1311671</identifier>
      <creatorName>Ahar, Ayyoub</creatorName>
      <affiliation>imec/Vrije Universiteit Brussel (VUB)</affiliation>
      <creatorName>Mahmoudpour, Saeed</creatorName>
      <affiliation>imec/Vrije Universiteit Brussel (VUB)</affiliation>
      <creatorName>Van Wallendael, Glenn</creatorName>
      <familyName>Van Wallendael</familyName>
      <affiliation>imec/Gent University, Gent, Belgium</affiliation>
      <creatorName>Paridaens, Tom</creatorName>
      <affiliation>imec/Gent University, Gent, Belgium</affiliation>
      <creatorName>Lambert, Peter</creatorName>
      <affiliation>imec/Gent University, Gent, Belgium</affiliation>
      <creatorName>Schelkens, Peter</creatorName>
      <affiliation>imec/Vrije Universiteit Brussel (VUB)</affiliation>
    <title>A Just Noticeable Difference Subjective Test for High Dynamic Range Images</title>
    <date dateType="Issued">2018-07-20</date>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1311670</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution Non Commercial 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;High Dynamic Range (HDR) imaging captures a wide range of luminance existing in real-world scenes. Due to large luminance levels and higher brightness of HDR displays, artefacts can be more noticeable to the Human Visual System (HVS). In a first attempt to experimentally quantify those noticeable levels for HDR images, we pioneered in conducting an exhaustive and comprehensive Just Noticeable Difference (JND) subjective experiment of which the outcome is presented in this paper. Six distortions including JPEG, JPEG2000, noise, blur, contrast change, and quantization artefacts have been considered in the test. The distortions were applied to 10 HDR images in 100 distortion levels resulting a database of 6000 HDR test images. The subjects were asked to find the image JND location on each set of 100 images they had the freedom to explore. The effect of content features on the noticeable threshold selection is investigated per distortion type. Our results in some cases show a significant correlation between content features and JNDs. We are hoping that our results can contribute to further exploitation of a precise HVS model for HDR quality assessment and optimization of the coding and bit allocation in HDR compression.&lt;/p&gt;</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/688619/">688619</awardNumber>
      <awardTitle>Immersive Experiences around TV, an integrated toolset for the production and distribution of  immersive and interactive content across devices.</awardTitle>
All versions This version
Views 103103
Downloads 224224
Data volume 1.9 GB1.9 GB
Unique views 9191
Unique downloads 206206


Cite as