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Abstract
In this document, a simple circuit constructed using a diode, a resistor, and a capacitor, utilized
as a peak detector and/or as an envelope detector is analyzed. The analysis is approached by
applying approximate methods and by a mix of exact and numerical methods, aiming design
guidelines and understanding of the circuit operation. Approximate and exact approaches are
compared, and a region where the approximate analysis provides adequate answers is identified.
Ability of the circuit to track the envelope variations is analyzed, and it is shown to depend both
on the circuit time constant and the output voltage value, i.e. the modulation signal frequency
and the modulation index. Relevant relations are derived and presented. Finally, distortion
of the output voltage caused by the output voltage ripple is addressed, and averaged model of
the circuit is derived. It is shown that average of the output voltage over the carrier period is
increased about three times when filtering of the output voltage is applied. Transfer function
for averaged waveforms of the envelope detector is derived, containing slight attenuation and a
real pole at the double of the carrier frequency.
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1 Introduction
Peak detector and/or envelope detector, built as a circuit of Fig. 1 is frequent in electrical
engineering curricula and usually the first circuit built by enthusiasts in amateur radio clubs.
The author of this document is no exception: still remembers his joy after this simple circuit
demonstrated its operation. Analysis of the circuit could be found in many places, like [1] or
[2], to mention a few. However, the author never found all the answers he asked himself in
available literature, at least not arranged in the way he would like it to be. After student Miloš
Nenadović asked a question during lab exercise, as stated in the Acknowledgement, the author
realized that there are other people being bothered by the same questions, which initiated
writing of this document. Peak and/or envelope detector is an old circuit, not being in the
focus of leading edge research in electronics. However, it is a nice circuit, which might be used
as an example to illustrate many complex circuit analysis techniques on a circuit containing
only three elements: one linear resistive, one nonlinear resistive, and one accumulating. In
such an example, the essence could be demonstrated without unnecessary burden of irrelevant
details.

At this point, difference between the peak detector and the envelope detector should be
clarified, since the circuit performing the tasks is the same. In both of the cases considered in
this document, we would assume the same general form of the input voltage

vIN(t) = vA(t) cos (ω0 t) (1)

where vA(t) is considered the signal envelope. In the case of a peak detector application, we
assume constant envelope, vA(t) = VC , and the goal is to reconstruct the value of VC . In the
case of envelope detector, vA(t) is assumed as a variable signal, and reconstructing its waveform
is the goal.

It is worth to mention that notion of a signal envelope [3] is much more complex than
shown here. However, our aim is to construct a simple circuit for asynchronous demodulation
of signals provided by standard amplitude modulation [4], and the definition applied here is
sufficient for such application.

Aim of the analysis presented in this document is to obtain reasonably accurate and reason-
ably simple equations that model the output voltage, both in the sense of the output voltage
ripple [5] and in the sense of the circuit ability to track the envelope variations. One of the goals
was to provide a rule of thumb for choosing R and C. This task is essentially one parameter
optimization problem, since R and C appear in equations merged in the time constant RC.
The optimization could be experimentally performed just in a few steps, and requirement for
such analysis did not emerge from practice. However, it might be nice to understand the circuit
operation, modeling, and optimization from a theoretical viewpoint, also.
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Figure 1: Peak detector and/or envelope detector, circuit diagram.
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Figure 2: Peak detector, actual waveforms of vIN and vOUT in a situation of practical interest.
Voltage scale: 2V/div; time scale: 0.5µs/div; parameters: f0 = 1MHz, R = 10 kΩ, C = 1 nF,
f0RC = 10, the diode is 1N4148.

This document will not help the readers to establish a startup company, nor to earn any
money. The aim is to help the readers to analyze a simple circuit that does not succumb
to simple and straightforward analytical techniques, in a hope that they would enjoy such a
journey like the author did.

2 Small Ripple Approximation
At first, let us consider a peak detector application of the circuit of Fig. 1 assuming

vIN = VC cos (ω0 t) (2)

aiming analysis of the circuit response and the waveform of the output voltage vOUT in the
periodic steady state.

To obtain appropriate model of a physical process, it is always useful to experimentally
observe actual system with the parameters of practical interest. Actual waveforms of vIN and
vOUT are presented in Fig. 2 for the experimental setup of Fig. 1 with f0 = 1MHz, R = 10 kΩ,
C = 1 nF, f0RC = 10, and the diode 1N4148. The waveforms are recorded using [6]. It is
worth to mention at this point that in the vOUT waveform of Fig. 2 effects caused by the diode
forward voltage drop of about VD ≈ 0.6V could be observed. These effects will not be covered
in any of the analyses shown in this document, since they can be included at the end of the
analysis simply by reducing the vOUT by VD. Carrying VD in the equations would complicate
already complex analysis, without significant effect on gaining insight in the circuit operation.
Thus, in the analyses the ideal diode model would be assumed.

Having in mind that the output voltage vOUT is at the same time the capacitor voltage,
vC = vOUT , it can be concluded that the output voltage waveform is characterized by long
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intervals of the capacitor discharge and short intervals of the capacitor charging through the
diode. Such situation occurs when the output voltage ripple [5] is low, hence the name of the
approximation proposed in this Section. However, the main feature of the approximation is
small conduction angle α = ω0 tα of the diode, where tα is the conduction time of the diode over
the output voltage period. Assuming α→ 0, the capacitor is instantly charged to the voltage

vOUT max = VC (3)

(VC − VD if we had included the diode forward voltage drop in the model) at the time points
when the input voltage reaches its maxima, and the capacitor is discharged during the remaining
part of the period. Small ripple approximation therefore assumes vOUT ≈ VC , resulting in the
capacitor discharge equation

C
dvOUT
dt

= −vOUT
R
≈ −VC

R
(4)

which states that the capacitor is being discharged with an almost constant current, which
corresponds to the experimentally observed almost linear decrease of the output voltage, shown
in Fig. 2. This results in

dvOUT
dt

= − VC
RC

(5)

which is integrated to obtain the waveform of vOUT

vOUT = VC

(
1− t

RC

)
(6)

for 0 < t < T0, which in normalized form reduces to

vOUT
VC

= 1− ω0 t

ω0RC
. (7)

This results in the output voltage minimum of

vOUT minapp = VC

(
1− T0

RC

)
= VC

(
1− 1

f0RC

)
(8)

and the peak-to-peak ripple

∆vOUT p−p = T0
VC
RC

=
VC

f0RC
. (9)

Values of vOUT max, vOUT min, and ∆vOUT p−p are proportional to the peak voltage VC . This
motivates normalization of the circuit voltages by VC , resulting in an expression for relative,
i.e. normalized ripple

∆vOUT p−p
VC

=
1

f0RC
(10)

where f0, R, and C are glued together in a single term f0RC, without a physical dimension.
This merge of quantities would occur frequently in the analyses that follow, and f0, R, and C
would frequently be treated as a single quantity represented by their product.

In Fig. 3, input voltage waveform is presented, as well as the output voltage waveforms
obtained by applying small ripple approximation and by semi-numerical solution technique
to be described in the following Section. Comparison of the output voltage waveforms yields
conclusion that agreement between the small ripple approximation and the numerical solution
of the circuit model is very good in time segment when the diode is off, which for the small
ripple approximation and the resulting small conduction angle is the dominant part of the
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Figure 3: Small ripple approximation, vIN , vOUT app, and vOUT , f0RC = 2, ideal diode.

waveform period. Also, effects caused by the diode forward voltage drop, clearly observable in
the waveform of Fig. 2, are absent from Fig. 3, since the ideal diode model is applied in the
later case.

Analyzing the approximate output voltage waveform of Fig. 3, the average of the output
voltage is found to be equal to the maximum of the input voltage reduced by one half of the
peak-to-peak ripple,

vOUT meanapp = VC −
1

2
∆vOUT p−p = VC

(
1− 1

2 f0RC

)
. (11)

According to this, if the peak voltage detection is the aim, the product f0RC should be as
large as possible. On the other hand, this would affect the circuit dynamic response, forcing the
designer to compromise between the peak voltage detection accuracy and the dynamic response,
which is going to be discussed later.

3 Semi-Numerical Analysis
Previously described small ripple approximation assumes instantaneous charging of the capac-
itor and constant current discharge during the whole period. These assumptions provide a
simple model, and its accuracy and applicability are challenged by the model proposed in this
section. The aim is to provide exact solution for the circuit of Fig. 1 in which the diode is mod-
eled as an ideal diode, and the input voltage is sinusoidal, as specified by (2). The waveform
of the output voltage obtained by the analysis presented in this Section is shown in 4 and its
quantitative parameters average of the output voltage, vOUT mean, and minimum of the output
voltage, vOUT min are being searched for.
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Figure 4: Semi-numerical solution, vIN and vOUT , f0RC = 1.

3.1 First conducting interval

To start the analysis, let us note that the assumed ideal diode model results in vOUT = vIN
during the intervals when the diode is conducting. At t = 0 the diode is conducting since the
capacitor is definitely being charged while the input voltage rises towards its maximum, and
remains conducting while iD > 0. Since

iD = iC + iR = C
dvOUT
dt

+
vOUT
R

(12)

condition iD = 0 reduces to
dvOUT
dt

+
vOUT
RC

= 0. (13)

While the diode is conducting, vOUT = vIN = VC cos (ω0 t), and

dvOUT
dt

= −ω0 VC sin (ω0 t) (14)

reducing the condition (13) to

− ω0 sin (ω0 t) +
cos (ω0 t)

RC
= 0. (15)

Equation (15) has an infinite number of solutions. To analyze the circuit, due to its periodic
response it is sufficient to analyze the phase angle period 0 ≤ ω0 t < 2π. In this aim, let us
define tβ as the time instant of the diode turn-off in this period, which occurs during the first
quarter-period, 0 ≤ tβ < T0/4. Such solution of (15) results in iD(tβ) = 0 and corresponds to
the phase angle β , ω0 tβ given by

β = arctan
1

ω0RC
(16)
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which satisfies the condition to be in the first quarter-period since 0 < β < π/2 for positive
ω0RC. In this manner, the first time segment of the circuit operation over considered period
is determined by 0 ≤ ω0 t < β, where vOUT = vIN .

3.2 Nonconducting interval

The second segment of the circuit operation starts with the diode turn off at tβ, and lasts for
tβ ≤ t < tγ, where tγ is the time instant when the diode turns on again, which corresponds to
the phase angle γ , ω0 tγ. Within the considered phase angle scope, γ is located in the range
3π/2 ≤ γ < 2 π.

While the diode is off, the output voltage is

vOUT (t) = vOUT (tβ) e−
t−tβ
RC (17)

where
vOUT (tβ) = VC cos β =

ω0RC√
1 + (ω0RC)2

VC . (18)

In terms of the phase angle, which is normalized time, normalized output voltage during the
interval when the diode is off is

vOUT (ω0 t)

VC
=

ω0RC√
1 + (ω0RC)2

e
−ω0 t−β
ω0 RC (19)

The diode nonconducting interval ends at tγ = γ/ω0 when vOUT given by (19) and vIN meet
again, vOUT (γ) = vIN(γ), which in expanded form results in

vOUT (γ) = VC cos γ =
ω0RC√

1 + (ω0RC)2
VC e

− γ−β
ω0 RC . (20)

After cancellation of VC , determining γ reduces to solving

cos γ =
ω0RC√

1 + (ω0RC)2
e
− γ−β
ω0 RC (21)

which is a transcendental equation [7] over γ. The equation does not have a closed form solution,
and requires a numerical solution over γ. This requirement makes the analysis semi-numerical,
since a closed form expression for γ would provide purely analytical solution.

To solve for γ numerically, a linear iterration proces is applied, designed to search a solution
for γ in the range 3 π/2 ≤ γ < 2π using the following iterration rule

γk+1 = 2π − arccos

 ω0RC√
1 + (ω0RC)2

e
− γk−β
ω0 RC

 . (22)

To design the iteration rule, special care is taken in inverting the cosine function, to provide
solution in the desired range. This is the most delicate part of the analysis. The iteration is
performed until the criterion

|γk+1 − γk| < ε (23)

is met. The results presented in this document are obtained with the exit parameter value
ε = 10−6.
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Figure 5: Angles: β, γ, and α.

3.3 Second conducting interval

The second conducting interval of the diode during the switching period occurs for γ ≤ ω0 t <
2π, which closes the period.

After angles β and γ are determined, the diode conduction angle is obtained as

α = 2π − (γ − β) (24)

and in the case of the small ripple approximation is considered to be negligibly small. Values of
β, γ, and consequently α, according to (16), (21), and (24) depend on the combined parameter
f0RC only. Dependence of α, β, and γ on f0RC is given in Fig. 5 in logarithmic scale over
f0RC. The figure illustrates that effects of filtering by the capacitor C are noticeable for
f0RC > 10−2, when α starts to decrease from 180◦. For f0RC > 102 the filtering is perfect,
and the conduction angle α approaches zero.

3.4 Parameters of the output voltage

Purpose of determining β analytically and γ numerically was to determine mean value of the
output voltage

vOUT mean =
1

2π

∫ 2π

0

vOUT (ω0 t) d(ω0 t) (25)

and its minimal value, vOUT min. Both quantities are convenient to represent in normalized
form, obtained by dividing with VC , providing the result in VC independent form. Average of
the output voltage is after some symbolic computation obtained as

vOUT mean
VC

=
1

2 π

(
sin β − sin γ + ω0RC

(
1− e

β−γ
ω0 RC

)
cos β

)
(26)
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Figure 6: Semi-numerical solution, vOUT max, vOUT min, and vOUT mean.

while the minimum of the output voltage is given by

vOUT mean
VC

= cos γ. (27)

Dependence of vOUT max, vOUT min, and vOUT mean on f0RC is presented in Fig. 6. Again, for
f0RC > 100 the filtering might be considered perfect. For f0RC < 0.1 effects of the filtering
are negligible.

4 Comparison of the Analyses
After the approximate solution and semi-numerical solution of the circuit model are obtained,
it would be interesting to compare the predictions for the minimum of the output voltage, given
by (8) and (27), as well as the predictions for the output voltage average, specified by (11) and
(26). For the maximum of the output voltage, both methods provide the same result, VC .

Solutions for vOUT max, vOUT min, and vOUT mean as they depend on f0RC are presented in
Fig. 7 in logarithmic scale over f0RC. The diagram indicates that for f0RC > 10 the solutions
are in a good agreement.

To provide more detailed visualization of the error introduced by the approximate solution,
let us define the errors as

∆vOUT min = vOUT minapp − vOUT min (28)

and
∆vOUT mean = vOUT meanapp − vOUT mean. (29)

Dependence of ∆vOUT min/VC and ∆vOUT mean/VC on f0RC is presented in Fig. 8. The diagrams
of Fig. 8 indicate that the approximate method always provides lower quantities, since the error
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is negative. Above 10 f0RC the error seems negligible, but seems to grow rapidly in magnitude
below this value, in an exponential-like fashion.

Exponential-like variation is an indication to apply logarithmic scale, and in Fig. 9 absolute
value of the normalized error expressed in percent is presented in logarithmic scale. As expected,
the variation is linear-like, and it can be concluded that for f0RC > 10 the error is in the range
below 1%. Thus, in this range small ripple approximation should definitely be considered as
acceptable.

5 Scaling
In the case the diode conducts, normalized output voltage is

vOUT
VC

= cos (ω0 t) (30)

while in the case the diode is off normalized output voltage is determined by (7) in the case
small ripple approximation is applied, or by (19) in the case it is not. This yields a conclusion
that modification of VC just scales the waveforms, not affecting the conduction angles, nor the
the output waveform shape. This yields conclusion that the output voltage ripple, of interest in
analyzing performance of the circuit of Fig. 1, is proportional to the input voltage amplitude,
VC . Furthermore, all the waveforms depend on normalized time ω0 t and parameter f0RC in
which the input voltage frequency, resistance of the applied resistor, and capacitance of the
applied capacitor are merged in a single value without a physical dimension [8].

To illustrate the effects of scaling, in Fig. 10 waveforms obtained applying semi-numerical
analysis are presented for VC , VC1 = 0.5VC , and VC2 = 1.5VC . In all of the cases, normalization
is performed taking VC as the base quantity. The output voltage waveforms are scaled by the
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Figure 10: Semi-numerical solution, scaling, ω0RC = 1.

same factor the input voltage amplitude is scaled, while the conduction angles remained the
same.

6 Analysis of Transients, Envelope Detection
Finally, after a lot of preparation, we reached the central point that motivated writing of this
document: envelope detection. The goal is to provide an analytical guide to choose f0RC
in order to provide good envelope detection. Addressing the issue is motivated by a student
question, as stated in the Acknowledgement.

At first, let us consider two results of two experiments: for f0RC = 10, when the envelope
detection is performed successfully, as depicted in Fig. 11, and for f0RC = 100 when it is
not, as depicted in Fig. 12. Two important conclusions could be drawn: in the first case
the ripple is higher, while the tracking is better. In the second case the ripple is lower, but
the envelope tracking is poor. Choice for f0RC is constrained by a compromise between the
tracking performance and the ripple.

What characterizes good envelope detection? To perform tracking, in each period of the
carrier, T0, the diode should be turned on. On the other hand, the ripple should be as low as
possible.

Consider the case of unsuccessful envelope reconstruction shown in Fig. 12. Significant
intervals of capacitor discharge without diode conduction to recharge could be observed. This
is caused by the envelope decrease faster than the decrease of the output voltage that given
choice of R and C could provide at a certain value of vOUT . The fastest decrease of the output
voltage that the envelope detector could perform is

dvOUT (t)

dt

∣∣∣∣
min

= −vOUT (t)

RC
. (31)
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Figure 11: Successful envelope detection. Parameters: R = 10 kΩ, C = 1 nF, f0 = 1MHz,
f0RC = 10, fm = 20 kHz, m = 0.5. Time scale: 10µs/div; voltage scale: 2V/div.

Figure 12: Unsuccessful envelope detection. Parameters: R = 100 kΩ, C = 1 nF, f0 = 1MHz,
f0RC = 100, fm = 20 kHz, m = 0.5. Time scale: 10µs/div; voltage scale: 2V/div.
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Good tracking assumes vOUT (t) ≈ vA(t). Thus, to provide good tracking of a given envelope
vA(t), values of R and C should satisfy

dvA(t)

dt
≥ −vA(t)

RC
(32)

for ∀t, which provides diode conduction in each period of the carrier. Separation of variables
yields a general rule for the choice of the time constant RC

− 1

vA(t)

dvA(t)

dt
≤ 1

RC
. (33)

Let us consider a typical test situation, when the envelope carries a sinusoidal message signal
of the frequency fm

vA(t) = VC + Vm cos (ωm t) = VC (1 +m cos (ωm t)) . (34)

To simplify the notation, parameter m defined as

m ,
Vm
VC

(35)

is introduced, being normalized amplitude of the message signal and named “modulation index”.
For |m| < 1 overmodulation does not occur.

Performing technical tasks, derivative of the envelope is obtained as

dvA(t)

dt
= −ωm Vm sin (ωm t) = −mωm VC sin (ωm t) (36)

reducing the condition of (33) to

mωm sin (ωm t)

1 +m cos (ωm t)
≤ 1

RC
. (37)

Dividing by ωm to remove physical dimensions from the analysis

m sin (ωm t)

1 +m cos (ωm t)
≤ 1

ωmRC
(38)

is obtained. To simplify the notation further, it is convenient to define a quantity without
physical dimension

k ,
1

ωmRC
(39)

reducing (38) to
m sin (ωm t)

1 +m cos (ωm t)
≤ k. (40)

Since it is assumed that the signal is not overmodulated,

1 +m cos (ωm t) > 0 (41)

and (40) reduces to

sin (ωm t)− k cos (ωm t) ≤
k

m
(42)

which is satisfied for √
1 + k2 ≤ k

m
(43)
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or
1

k
≤
√

1−m2

m
. (44)

Restoring (39), choice of the time constant RC is reduced to

RC ≤ 1

ωm

√
1−m2

m
(45)

in order to provide the envelope recovery.
Analysis of the envelope tracking up to this point did not involve carrier frequency, since the

carrier frequency is related only to the output voltage ripple, the higher the carrier frequency
the lower the ripple. However, there is a relation between the output voltage ripple and the
envelope tracking capability, which is going to be derived here. First, consider a result from
small ripple approximation analysis that relates the output voltage ripple and the time constant
RC, derived from (10)

RC =
2π

ω0

vOUT
∆vOUT p−p

. (46)

Substituting in (45) yields
2 π

ω0

vOUT
∆vOUT p−p

≤ 1

ωm

√
1−m2

m
(47)

which can be transformed to

∆vOUT p−p
vOUT

≥ 2 π
ωm
ω0

m√
1−m2

(48)

or
∆vOUT p−p
vOUT

≥ 2 π
fm
f0

m√
1−m2

. (49)
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Relations (48) and (49) present fundamental relation between the normalized output voltage
ripple, ratio of the modulation frequency and the carrier frequency, and the modulation index
m, since the normalized output voltage ripple is greater or equal to the product of fm/f0 and
a function of m, 2 πm/

√
1−m2, depicted in Fig. 13. The relations indicate that the ripple

is lower for higher ratios of f0/fm, and that for high values of the modulation index, when
m approaches 1, the envelope tracking could be provided only at the expense of high output
voltage ripple. The later is caused by low values of vOUT , insufficient to provide required
decrease rate of the output voltage.

7 Distortion
AC component of the envelope detector output voltage should reconstruct the message sent ap-
plying standard amplitude modulation [4]. However, the output voltage ac component contains
some distortion even if the requirements of Section 6 are met. The cause of distortion is incom-
plete reduction of the output voltage ripple, the more present the lower f0/fm ratio is. As an
example, consider an experimental result for the output voltage AC component corresponding
to the case of Fig. 11, presented in Fig. 14. In Fig. 14 reconstructed sinusoidal message signal
could be observed, as well as a superimposed sawtooth signal. To measure distortion of a signal
x(t), total harmonic distortion defined as

THD ,

√
XRMS

X1RMS

− 1 (50)

is used, where XRMS is the signal root-mean-square value, and X1RMS is the root-mean-square
value of its first harmonic. This definition is slightly computationally more convenient than the
one of [9]. After five repeated waveform captures, by digital signal post-processing the mean
value of THDexp = 6.13% is obtained, with the standard deviation estimated as σTHD exp = 0.05.

Extending the ideas of small ripple approximation, derived in Section 2, from the constant
envelope to the modulated envelope case, the approximate model could be designed such that
at t = nT0, n ∈ N

vOUT (nT0) = vIN(nT0) (51)

and that for nT0 ≤ t < (n+ 1)T0

vOUT (t) = vIN(nT0)−
vIN(nT0)

RC
(t− nT0) . (52)

This is nothing more than superimposing the sawtooth waveform with proper amplitude and
frequency to the envelope. Such waveform is computationally obtained, and presented in Fig.
15 in the same scale and for the same parameter values as the waveform of Fig. 14. The
waveforms agree to a great extent, and the main difference are pronounced discontinuities in
the waveform of Fig. 15, caused by neglected intervals of diode conduction. Total harmonic
distortion of the waveform of Fig. 15 is THDsim = 6.44% which is in pretty good agreement
with the experimental result.

To conclude, the ripple caused distortion could be reduced by increasing f0RC parameter.
This can either be done by increasing f0, which is rarely a parameter available to play with, or
by increasing the time constant RC, but this would decrease the envelope tracking capability.

8 Averaged Model
The material presented in this section is inspired by the method of averaging, frequently used
in power electronics, as pioneered in [10], and described in a tutorial fashion in [11]. Essence of
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Figure 14: The output voltage AC component, experimental result. Parameters: R = 10 kΩ,
C = 1 nF, f0 = 1MHz, f0RC = 10, fm = 20 kHz, m = 0.5. Time scale: 5µs/div; voltage
scale: 1V/div.

Figure 15: The output voltage AC component, simulation. Parameters: R = 10 kΩ, C = 1 nF,
f0 = 1MHz, f0RC = 10, fm = 20 kHz, m = 0.5. Time scale: 5µs/div; voltage scale: 1V/div.
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the method is to remove the ripple by averaging. In power electronics, the procedure continues
to linearization and to determining transfer functions, in order to apply linear control system
theory to system design. Some of these concepts would be applied here.

Physical justification to apply the averaging method in the case analyzed in this document
is in the fact that the envelope reconstructed by the detector is going to be post-processed by
a low-pass system, even if it is only a headphone set connected directly to the detector, as in
amateur radio.

Let us define the averaged waveform samples for a signal x(t) over T0 interval as

〈x(nT0)〉 ,
1

T0

∫ nT0

(n−1)T0

x(t) dt. (53)

In the case of small ripple approximation, according to (52), the averaged output voltage
waveform is

〈vOUT (nT0)〉 = vA ((n− 1) T0)

(
1− 1

2 f0RC

)
(54)

assuming that vA (nT0) = vIN (nT0). This means that samples of the averaged output voltage
waveform are the envelope waveform samples delayed for one period of the carrier and scaled
down by a factor 1− 1/ (2 f0RC).

Having in mind that the envelope detector output voltage is going to be filtered anyway, a
question that naturally arises is why any filtering of the output voltage had been applied at
all? Applying the averaging technique in the case C = 0, the average of the output voltage is
obtained as

〈vOUT (nT0)〉 =
1

π
vA ((n− 1) T0) (55)

which is about three times lower than the value obtained in the case of filtering. Thus, imme-
diate filtering of the signal at the envelope detector output increases the signal amplitude for
about three times.

9 Transfer Function
After the averaged output voltage waveform is obtained by (54), the result might be applied to
determine transfer function of the envelope detector as it applies to AC components of averaged
waveforms, which is a procedure common in power electronics.

Let us assume that the envelope takes form

vA (t) = VC (1 +m cos (ωm t)) . (56)

According to (54), averaged value of the envelope detector output voltage would be

〈vOUT (nT0)〉 (t) = VC (1 +m cos (ωm ((n− 1) T0)))

(
1− 1

2 f0RC

)
. (57)

From here, AC component could be extracted and represented using the phasor transform [12],
resulting in

V OUT ac = mVC

(
1− 1

2 f0RC

)
. (58)

On the other hand, the same averaging technique might be applied to the envelope, resulting
in

〈vA (nT0)〉 = vA ((n− 1) T0) +
T0
2

d vA(t)

d t

∣∣∣∣
t=(n−1)T0

(59)
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which for the assumed envelope waveform reduces to

〈vA (nT0)〉 = VC

(
1 +m

(
cos (ωm (n− 1) T0)− π

fm
f0

sin (ωm (n− 1) T0)

))
. (60)

Extracting the AC component and performing the phasor transform [12],

V Aac = mVC

(
1 + j π

fm
f0

)
= mVC

(
1 + j π

ωm
ω0

)
= mVC

(
1 + j

ωm
2 f0

)
(61)

is obtained.
Defining the transfer function of the envelope detector as

H (jωm) ,
V OUT ac

V Aac

(62)

the transfer function is obtained as

H (jωm) =
1− 1

2 f0RC

1 + j ωm
2 f0

. (63)

Obtained transfer function consists of a scaling factor 1 − 1
2 f0RC

and a single real pole at
ωp = 2 f0, which should be a pretty high frequency to provide significant effects on the output
voltage waveform.

10 Conclusions
In this document, a thorough analysis of the peak and/or envelope detector circuit is performed.
The analysis is first approached using a small ripple or small conduction angle approximation,
and relevant equations are derived for this simplified model. To validate the results obtained
using the approximate techniques, a semi-numerical analysis of the circuit model is performed,
aiming exact analysis wherever possible and resorting to numerical techniques only where tran-
scendental equations prohibited closed form solution. The results of the two approaches are
compared, and it is shown that for f0RC > 10 the small ripple approximation provides the
results with an error bellow 1%. Next, an application related topic of scaling is covered, in-
dicating that the output voltage ripple, the output voltage average, and the output voltage
waveform are proportional to the input voltage amplitude for a given value of f0RC, while the
conduction angles are not affected by the input voltage amplitude variations.

Main issue discussed in the paper is the ability of the circuit to accurately track the envelope
variations, which was the essence of the question posed by a curious student, which initiated
publishing of this document. After the analysis, it is shown that ability of the envelope detector
to follow the envelope variations depends both on the circuit time constant RC, as well as the
output voltage itself. Author of the document is not aware of such a conclusion clearly stated
in available literature. In the case of sinusoidal modulating signal, this reduces to a conclusion
that ability of the circuit to track variations of the envelope depend both on the modulating
signal frequency and the modulation index. This is the main result presented in the document,
and the dependence is analyzed in detail, relating the envelope tracking ability to the output
voltage ripple, indicating that there is a trade-off between the two.

Finally, the distortion caused by the output voltage ripple is analyzed, and the experimental
results are compared to the low ripple approximation model, showing good agreement. Averaged
model of the envelope detector is derived, showing that average of the output voltage during
the carrier period follows the envelope with a delay of one carrier period and with some linear
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downscaling caused by the output voltage ripple. A case when filtering of the output voltage
has not been applied is addressed, showing that in that case the averaged output voltage would
be about three times lower than in the case filtering is applied. Transfer function of the envelope
detector defined on the level of averaged waveforms of the output voltage and the envelope is
derived, containing scaling factor 1 − 1

2 f0RC
and a single real pole at ωp = 2 f0, which should

be a frequency high enough not to cause significant effects on the output voltage waveform.
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Appendix
from pylab import *

f0RC = logspace(-3, 4, 701)
w0RC = 2 * pi * f0RC

n = len(w0RC)
beta = empty(n)
gamma = empty(n)
alpha = empty(n)

def f(gamma):
f = k * exp(- gamma / w0RC) - cos(gamma)

for i in range(n):

beta[i] = arctan(1.0 / w0RC[i])
k = cos(beta[i]) * exp(beta[i] / w0RC[i])

b0 = 7 * pi / 4
cmax = 1e5
c = 0
eps = 1e-6
while c < cmax:

b1 = 2 * pi - arccos(k * exp(-b0 / w0RC[i]))
if abs(b1 - b0) < eps:

break
b0 = b1

gamma[i] = b1
alpha[i] = 2 * pi - (gamma[i] - beta[i])

close(’all’)

rc(’text’, usetex = True)
rc(’font’, family = ’serif’)
rc(’font’, size = 16)
rcParams[’text.latex.preamble’] = [r’\usepackage{amsmath}’]

figure(1, figsize = (10, 6))
semilogx(f0RC, degrees(alpha), ’m’, label = r’$\alpha$’, linewidth = 2)
semilogx(f0RC, degrees(beta), ’b’, label = r’$\beta$’, linewidth = 2)
semilogx(f0RC, degrees(gamma), ’g’, label = r’$\gamma$’, linewidth = 2)
ylim(-30, 390)
yticks([0, 90, 180, 270, 360])
xlabel(r’$f_0 \, R \, C$’)
ylabel(r’$\beta, \, \gamma, \, \alpha \; [^\circ]$’)
legend(loc = ’center right’)
grid()
savefig(’fbetagammaalpha.pdf’, bbox_inches = ’tight’)

data = array([w0RC / 2.0 / pi, beta, gamma, alpha]).transpose()
np.save(’fbetagammaalphadata.npy’, data)

voutmean = (sin(beta) - sin(gamma) +
cos(beta) * (w0RC * (1 - exp((beta - gamma) / w0RC)))) / (2 * pi)

voutmin = cos(gamma)

21



voutmax = ones(n)

figure(2, figsize = (10, 6))
semilogx(f0RC, voutmax, ’b’, label = r’$v_{OUT\,max} / V_C$’, linewidth = 2)
semilogx(f0RC, voutmin, ’g’, label = r’$v_{OUT\,min} / V_C$’, linewidth = 2)
semilogx(f0RC, voutmean, ’r’, label = r’$v_{OUT\,mean} / V_C$’, linewidth = 2)
ylim(-0.1, 1.1)
xlabel(r’$f_0 \, R \, C$’)
ylabel(r’$v_{OUT\,max} / V_C, v_{OUT\,min} / V_C, v_{OUT\,mean} / V_C$’)
legend(loc = ’lower right’)
grid()
savefig(’fmaxminmean.pdf’, bbox_inches = ’tight’)
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