Preprint Open Access

QP versus NP

Frank Vega


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1306970</identifier>
  <creators>
    <creator>
      <creatorName>Frank Vega</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8210-4126</nameIdentifier>
      <affiliation>Joysonic</affiliation>
    </creator>
  </creators>
  <titles>
    <title>QP versus NP</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Complexity Classes</subject>
    <subject>Completeness</subject>
    <subject>Logarithmic Space</subject>
    <subject>Nondeterministic</subject>
    <subject>XOR 2SAT</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-07-06</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Preprint</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1306970</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1306795</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Given an instance of $\textit{XOR 2SAT}$ and a positive integer $2^{K}$, the problem exponential exclusive-or 2-satisfiability consists in deciding whether this Boolean formula has a truth assignment with at leat $K$ satisfiable clauses. We prove exponential exclusive-or 2-satisfiability is in $QP$ and $\textit{NP-complete}$. In this way, we show $QP \subseteq NP$.&lt;/p&gt;</description>
  </descriptions>
</resource>
126
186
views
downloads
All versions This version
Views 12644
Downloads 18621
Data volume 50.6 MB5.8 MB
Unique views 9543
Unique downloads 17321

Share

Cite as