Conference paper Open Access

A Model-based Approach to Certification of Adaptive MILS

Koelemeijer, Dorien; Araby, Rasma; Nouri, Ayoub; Bozga, Marius; DeLong, Rance


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1306089</identifier>
  <creators>
    <creator>
      <creatorName>Koelemeijer, Dorien</creatorName>
      <givenName>Dorien</givenName>
      <familyName>Koelemeijer</familyName>
      <affiliation>ATSEC</affiliation>
    </creator>
    <creator>
      <creatorName>Araby, Rasma</creatorName>
      <givenName>Rasma</givenName>
      <familyName>Araby</familyName>
      <affiliation>ATSEC</affiliation>
    </creator>
    <creator>
      <creatorName>Nouri, Ayoub</creatorName>
      <givenName>Ayoub</givenName>
      <familyName>Nouri</familyName>
      <affiliation>Univ. Grenoble Alpes, CNRS</affiliation>
    </creator>
    <creator>
      <creatorName>Bozga, Marius</creatorName>
      <givenName>Marius</givenName>
      <familyName>Bozga</familyName>
      <affiliation>Univ. Grenoble Alpes, CNRS</affiliation>
    </creator>
    <creator>
      <creatorName>DeLong, Rance</creatorName>
      <givenName>Rance</givenName>
      <familyName>DeLong</familyName>
      <affiliation>The Open Group</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A Model-based Approach to Certification of Adaptive MILS</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>modular assurance cases</subject>
    <subject>evidential tool-bus</subject>
    <subject>adaptive MILS</subject>
    <subject>dynamic reconfiguration</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-06-25</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1306089</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1306088</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/mils</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In this work, we tackle the problem of certifying Adaptive systems. These are able to automatically perform self-reconfiguration at runtime, which makes classical certification approaches inapplicable. The need for certification approaches for these systems is thus becoming urgent, especially due to their prevalent use in safety- and mission critical settings. Due to the inherent complexity of adaptive systems and the absence of a principled methodology for their construction and assurance, there has been little movement by certification authorities to accept such systems. Among the challenges for certification are a way of generating an adequate assurance case for initial state of the adaptive system and for each step in its incremental adaptation, and generation and management of the evidence upon which the assurance case relies. We contribute in this research by proposing a novel modular approach to the certification of adaptive systems in the context of the Adaptive MILS architecture.&lt;br&gt;
The proposed approach is backed by an Evidential-Tool Bus implementation that allows a continuous on-demand generation of assurance cases.&lt;/p&gt;</description>
  </descriptions>
</resource>
749
394
views
downloads
All versions This version
Views 749751
Downloads 394394
Data volume 985.6 MB985.6 MB
Unique views 733735
Unique downloads 306306

Share

Cite as