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Abstract—This paper studies the co-design optimization 

approach to determine how to optimally adapt automatic 
control of an intelligent electric vehicle to driving styles. A 
cyber-physical system (CPS) based framework is proposed 
for co-design optimization of the plant and controller 
parameters for an automated electric vehicle, in view of 
vehicle’s dynamic performance, drivability, and energy 
along with different driving styles. System description, 
requirements, constraints, optimization objectives and 
methodology are investigated. Driving style recognition 
algorithm is developed using unsupervised machine 
learning and validated via vehicle experiments. Adaptive 
control algorithms are designed for three driving styles 
with different protocol selections. Performance exploration 
method is presented. Parameter optimizations are 
implemented based on the defined objective functions. Test 
results show that an automated vehicle with optimized 
plant and controller can perform its tasks well under 
aggressive, moderate, and conservative driving styles, 
further improving the overall performance. The results 
validate the feasibility and effectiveness of the proposed 
CPS-based co-design optimization approach.  
 

Index Terms— Co-design optimization, Automated 
electric vehicle, Driving style, Cyber-physical systems.  

I. INTRODUCTION 

UTOMATED vehicles have been gaining increasing   
attention from both academia and industrial sectors [1]. 

The field of intelligent vehicles exhibits a multidisciplinary 
nature, involving transportation, automotive engineering, 
information, energy and security [2]-[5]. Intelligent vehicles 

have increased their capabilities in highly and even fully 
automated driving. However, unresolved problems do exist due 
to strong uncertainties and complex driver-vehicle interactions. 

A. Driver-Vehicle Interactions 

Highly automated vehicles are likely to be on public roads 
within a few years. Before transitioning to fully autonomous 
driving, driver behavior should be better understood and 
integrated to enhance vehicle performance and traffic efficiency 
[6]-[9]. To address these challenges, researchers have explored 
advanced driver assistance systems (ADAS), and human-
machine interface (HMI) from a variety of points of view [10], 
[11]. However, since the dynamic relationships between driver 
and vehicle are highly complex, satisfactory driver-vehicle 
interactions should go beyond the present ADAS and HMI 
systems. Human-vehicle interactions have already being 
considered in a high-level closed loop, where driving style, 
driving feel and vehicle performance, are considered [12]. 
Driving style plays a very important role in vehicle energy 
efficiency and ride comfort, thus significantly impacting 
controller synthesis [12]-[14]. For instance, control objectives 
and control protocols should be adaptively adjusted according 
to different driving styles. Based on the findings reported in 
[13], a better understanding of driving styles could help 
improve ADAS performance and further reduce vehicle’s fuel 
consumption through driver feedback. In [14], an enhanced 
intelligent driver model was developed, and then it was used to 
investigate the impact of different driving strategies on traffic 
capacity. In [15], an adaptive cruise control strategy 
considering the characteristics of different driving styles was 
developed, and the proposed strategy could automatically adapt 
to different traffic situations. Nevertheless, advanced control 
and optimization of vehicle systems with characterized driving 
styles are still open challenges and worthwhile exploring. 

B. Automated Electrified Vehicles 

The ever-growing attention to the environment and energy 
conservation requires automobiles to be cleaner and more 
efficient [16]-[18]. In this study, an electric vehicle (EV) is 
chosen as the platform to conduct our research in automated 
driving. Based on existing studies, small changes in driving 
style can cause unnecessary energy waste and sub-optimal 
performance of an EV [19], [20]. Moreover, regenerative 
braking capability of EVs can be enhanced by prior knowledge 
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of driving style. Hence, an optimal energy management strategy 
can be obtained with knowledge about the entire driving cycle, 
environment, and driver behaviors. Therefore, the information 
of operating scenarios, driver behaviors and driver-vehicle 
interactions is crucial and should be integrated to enhance the 
energy efficiency of automated electric vehicles. 

C. Cyber-Physical Systems Approach 

A Cyber-Physical System (CPS) is a distributed, networked 
system that fuses computational processes (cyber world) with 
the physical world [21], [22].  An EV is a typical example of 
CPS. In details, an automated EV involves the following 
subsystems: the controller, representing the “Cyber” world, the 
physical plant, the “Human” driver, and the environment. These 
different elements, which are highly coupled, decide the 
vehicle’s behavior and overall performance, as Fig. 1 shows. 

 
Fig. 1.   CPS based human-vehicle interactions. 

The main issue of the existing approaches in vehicle design 
and control is the lack of global optimality in the selection of 
system architecture, physical parameters, and control variables 
[23]. In this context, the emerging co-design method provides 
the capability to extend system design space and further 
enhance the performance of CPS [24]-[28]. In [24], a platform-
based design method utilizing contracts to do the high-level 
abstraction of the components in a CPS was proposed, and it is 
able to offer support to the overall design process. In [26], co-
design optimization of a cyber physical vehicle system, which 
considers task time, actuator characteristics, energy 
consumption and processor workload, was investigated. In [27], 
a CPS-based control framework was developed for vehicle 
systems to minimize the car-following fuel consumption and 
ensure inter-vehicle safety. Besides the cyber and the physical 
worlds, we also need to take “Human” of an automated vehicle 
into consideration. Thus, the interactive impacts between the 
vehicle plant, control variables, multi-performance and driver 
styles, should be well understood. 

To further advance the existing CPS methods as well as their 
applications reported in [29-31], following contributions are 
made in this paper: 1) a CPS-based co-design optimization 
framework is proposed for an automated EV considering 
different driving styles; 2) a driving style recognition algorithm 
is developed using unsupervised learning method; 3) control 
algorithms are synthesized for typical driving styles with 
different protocol selections. 

The rest of the paper is organized as follows: The co-design 

optimization problem is formulated in Section II. System 
models with experimental validation are presented in Section 
III. Section IV presents the vehicle controller synthesis for three 
driving styles with different control protocol selections. Then, 
the performance exploration method is presented in Section V. 
Section VI reports test results of design optimization, followed 
by conclusions presented in Section VII. 

II. PROBLEM FORMULATION 

In this section, the co-design of an automated electric vehicle 
with different driving styles is formulated as a multi-objective 
optimization problem. The goal is to find optimal assignments 
for design variables to maximize performances while satisfying 
a number of constraints. To ensure the problem to be solved 
within a reasonable complexity, the following assumptions are 
made: 1) The vehicle operates in normal conditions, and vehicle 
stability could be guaranteed by stability control functions; 2) 
Only longitudinal motion control is considered in this study; 3) 
The sizing of the electric powertrain is fixed, i.e., the parameters 
of the battery and the electric motor are constant to bound the 
exploration space. 

A. Hierarchical Optimization Methodology 

The optimization problem is formulated as a constrained 
multi-objective one where both vehicle and controller 
parameters need to be chosen. In this paper, the Platform-Based 
Design (PBD) is adopted as the co-design methodology [21]. 

 
Fig. 2.   Platform-Based design optimization of the electric vehicle. 

As Fig. 2 shows, PBD is a meet-in-the-middle approach that 
favors re-usability. At the top layer, there are high-level 
requirements and constraints. The bottom layer is defined by a 
design platform, i.e., a library of components characterized by 
their behaviors and performance. In this paper, the bottom layer 
contains the models of the vehicle, electric powertrain, brakes, 
and driver-style-based controller. The models are parametrized 
to capture families of the system, components and controllers. 
The design problem is to select a set of components and their 
parameters so that the constraints are satisfied with the 
objective functions optimized. The selection process is called 
mapping, indicated as the middle-layer meeting point in the 
diagram, since the obligations captured in the requirements and 
constraints are discharged by particular components or 
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combinations thereof. Co-design of the physical parameters, 
controller protocols and variables, for the intelligent electric 
vehicle is then made possible. 

B. System Description 

1) Physical plant: For the structure of the studied automated 
electric vehicle, a central electric motor is installed at the front 
axle of the vehicle. During acceleration, the motor, which is 
powered by the battery, provides propulsion through the 
transmission system to the wheels. During deceleration, the 
regenerative braking torque generated by the motor is blended 
with the friction braking modulated by the hydraulic modulator. 

2) Control architecture: The high-level strategy for the 
longitudinal motion control of the automated EV is designed to 
track a reference acceleration, generated via the pre-defined 
acceleration profile, as shown in Fig. 3. The reference 
acceleration profile is a 3D look-up table defined by the 
reference vehicle speed vref, the ego-vehicle speed v, and the 
reference acceleration aref. 

 
Fig. 3.   Longitudinal motion control architecture of the intelligent vehicle. 

C. Driving Event 

A driving event is a driving maneuver, such as acceleration, 
deceleration, turning, and lane change, which can be used to 
identify driving styles [28]. As mentioned above, this paper 
mainly focuses on longitudinal motion control, hence the 
adopted driving events are defined as [29]: 

1) Event 1: 0-50km/h acceleration. In this event, the car is 
accelerated from 0 to 50 km/h. The vehicle acceleration, jerk, 
and the time taken in this process are typical performance 
indices. This event is used to optimize and evaluate the dynamic 
performance and ride comfort under different driving styles. 

2) Event 2: 50-0 km/h deceleration. In this event, the car is 
decelerated from 50 km/h to 0. The deceleration and the time 
taken in this process are typical performance indices. The 
energy recovered during the braking process can be used to 
evaluate energy efficiency. This event is used to optimize and 
check vehicle’s dynamic performance and energy efficiency 
under different driving styles. 

3) Event 3: driving cycle. Although the energy consumption 
of the vehicle can be evaluated in the above two events, the time 
duration of an acceleration or deceleration procedure is 
relatively short, making it difficult to evaluate energy 
consumption at the vehicle level. Thus, the ECE driving cycle 
is adopted for measuring energy efficiency under different 
driving styles. The ECE driving cycle, which is a series of data 
points representing the vehicle speed versus time, exhibits the 
typical driving conditions of a car in urban areas [17]. It is 
usually adopted to carry out road testing for studying the fuel 
economy of a passenger car.  

D. Driving Style Recognition 

To identify driving style for control synthesis and system 
optimization, a driving style recognition (DSR) algorithm is 
developed using unsupervised machine learning with partially 
labelled data. The data set is collected in the road tests with a 
Sedan-Type vehicle, and it is comprised of 9 real life cycles 
covering over 500 km. The data can be overall classified into 
three groups according to the driver feedback as aggressive, 
conservative and moderate. These three driving styles are firstly 
defined as [29]-[34]: 

1) Aggressive: Aggressive drivers exhibit frequent changes 
in throttle and brake pedal positions [32]. They drive with sharp 
and abrupt accelerations and decelerations, aiming at vehicle 
dynamic performance. This kind of behavior would result in 
higher fuel consumption and increased likelihood of accidents 
[29]. 

2) Conservative: Conservative drivers often exhibit mild 
operational behaviors with small amplitudes and low-frequency 
actions on steering wheel, accelerator and brake pedal [33]. 
They value energy efficiency and ride comfort, and avoid 
abrupt variations of vehicle state. 

3) Moderate: Moderate drivers are positioned between the 
above two. They would like to balance multiple performances, 
such as vehicle dynamic performance, ride comfort, and energy 
efficiency [29]. 

 
Fig. 4.   The real life route used for DSR experimental validation. 

The unlabelled data set is pre-processed for driving events 
detection and statistics extraction. A total amount of six signals 
is used: throttle pedal position, brake light switch, longitudinal 
and lateral accelerations, steering wheel angle and vehicle 
speed. Five statistics are extracted per event: maximum, 
minimum, mean, standard deviation and root mean square. The 
reduced set of signals is clustered using Gaussian Mixture 
Models (GMM), which generates the DSR classification 
algorithm to be implemented onboard. The performance of the 
DSR algorithm is validated against the subjective labels and 
further tested with a new set of data from a new real life route 
with changeable road type, as shown in Fig. 4. This new data 
set is collected by a SUV-type vehicle with a different driver. 

TABLE I.  DRIVING STYLE RECOGNITION RESULTS IN SUV CYCLES 

 Agg. Cycles Moderate Cycle Conserv. Cycle 
Acceleration 0.55 (149) 0.43 (113) 0.34 (106) 

Brake 0.58   (33) 0.56   (25) 0.36   (22) 
Cruise 0.83 (149) 0.69 (126) 0.70 (124) 
Turn 0.41     (6) 0.29     (7) 0.29     (7) 

Table I shows the results of the SUV driving data using the  
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Fig. 5.   Pre-defined 3D reference acceleration profiles. 

developed DSR algorithm. So as to quantitatively evaluate the 
performance of the algorithm, the driving cycles are classified 
per events using the aggressiveness index. The aggressiveness 
index is transformed from the classification into an equivalent 
index, assigning an increasing value from 0 to 1 to the different 
events based on the level of aggressiveness [34]. To provide 
further information about the robustness of each classification, 
the number of events identified is included in brackets and 
italics. According to the results, the conservative cycle is 
classified as the least aggressive one, particularly by 
acceleration and brake events analysis. The moderate cycle is 
situated between the aggressive and conservative ones. While 
the aggressive cycle is identified as the sportiest one, but it has 
a similar braking level with the moderate one, agreeing with 
driver’s feedback. Finally, the consistency and robustness of the 
algorithm are verified using the test data set. The test shows 
consistency in the identification and aligns with drivers’ 
perception. The above testing results validate the suitability of 
this approach for DSR, its onboard implement capability and 
robustness to vehicle and driver characteristics. More detailed 
algorithms with experimental results can be found in [34]. 

Based on the above recognition and classification algorithms, 
the features of aggressive, conservative and moderate driving 
styles can be extracted, and online recognition of a driver’s 
driving style can be realized using the well-trained model as 
well. Meanwhile, according to the above features obtained, the 
3 dimensional human-like acceleration profiles are developed 
for each driving style, as illustrated in Fig. 5. 

E. Requirements for Vehicle Design and Optimization 

The requirements for vehicle design and control involve 
dynamical performance, energy efficiency, and ride comfort. 
Driving style consideration implies the introduction of multiple 
trade-offs between performances that are set as the objective 
functions in our optimization problem, under different driving 
styles, operating conditions, and driving tasks.  

1) Dynamic performance: Dynamic performance is 
considered as the fundamental and the most important indicator 
of a car [29]. Maximum speed and acceleration time are proxies 
for dynamic performance. In this paper, we select the 0-50 km/h 
acceleration time tacc and the 50-0 km/h deceleration time tbrk as 
two indicators for the dynamic performance to capture driver’s 
behavior and select suitable value for the gear ratio ig. 

2) Ride comfort: The comfort level of a vehicle, also known 
as drivability, can be assessed by vehicle’s jerk j, which is the 
second derivative of the vehicle’s longitudinal velocity v [17]: 

  j v                                          (1) 

    During acceleration, torsional oscillations may occur in the 

drivetrain due to fast torque transitions, resulting in unexpected 
jerks at vehicle level and deteriorated drivability. To cope with 
this problem, an active damping controller is usually required 
[36]. Although aggressive drivers may enjoy fierce acceleration 
and jerk, for those who prefer conservative or moderate driving 
style, ride comfort is a very important performance. In this 
paper, jerk is used to capture the comfort level of the vehicle. 

3) Energy efficiency: The energy efficiency of a vehicle can 
be represented by the energy consumed during a certain trip. 
Typically, energy consumption can be reduced by optimizing 
the powertrain energy management [29]. For electrified 
vehicles, it can be further enhanced through regenerative 
braking. Thus, in this paper, the regenerated braking energy 
defined in equation (2) is set as one of the optimization goals in 
the trade-off problem [18]. 

,reg gen m reg mE T dt                             (2) 

where Ereg is the regenerated braking energy, Tm,reg and ωm are 
the regenerative braking torque and the angular speed of the 
electric motor, respectively, and ηgen is the generation efficiency 
of the motor. 

F. Constraints for Vehicle Design and Optimization 

Constraints in the optimization problem involve indicators 
that are set to stay within specific bounds to limit the search 
space. 

1) Maximum vehicle speed: The constraint on vehicle speed 
is posed as:   

max max / (30 ) (100 / 3.6)gv r n i m s                       (3) 

where vmax is the maximum speed of the vehicle, nmax is the 
highest rotational speed of the electric motor, r is the nominal 
radius of tire, and ig is the gear ratio. 

2) Minimum gradeability: Gradeability is defined as the 
highest grade that a vehicle can achieve with a maintained 
speed. Once the motor parameters are given, this performance 
is determined by the gear ratio, as equation (4) shows [35].  

max max max( cos sin )t g m,i T mgr f                  (4) 

max maxtan 30%i                               (5) 

where Tm,max is motor’s peak torque, m is the total mass of the 
vehicle, ηt is the efficiency of the transmission system, f is the 
friction drag coefficient, and α is the grade angle. 

3) Minimum brake intensity: In order to guarantee stability 
during braking, a vehicle needs to have enough braking force, 
represented by the brake intensity z, as required by regulation 
ECE-R13 [36]: 

/ 0.1 0.85( 0.2)z v g                             (6) 
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where φ is the adhesion coefficient of the road. 
4) Powertrain limits: According to the assumption described 

above, the characteristics of the power source are given, then 
the limitation on motor torque can be described by: 

m m m,limT P                                     (7) 

where Tm is output torque of the electric motor, and Pm,lim is the 
peak power of the electric motor. 

III. SYSTEM MODELLING AND VALIDATION 

A. Electric Powertrain system 

The electric powertrain is comprised of an electric motor, a 
gearbox, a final drive, a differential, and half shafts. The motor 
torque is modelled as a first-order reaction, as shown in 
equation (8). The models for the drivetrain dynamics and half-
shaft torque can be given by equation (9) and (10) [25]. 

  ,m ref m m mT T T                                    (8) 

2 /m m m hs gJ T T i                                 (9) 

( / ) ( / )hs hs m g w hs m g wT k i c i                     (10) 

where τm is the small time constant, Tm,ref is the reference torque 
of the electric motor, Ths is the half-shaft torque, Jm is the motor 
inertia, and θm and θw are the angular positions of electric motor 
and load, respectively. khs and chs are the stiffness and damping 
coefficients of the half shaft, respectively. 
    In this paper, the battery is built as an open-circuit voltage-
resistance model. Look-up tables are compiled on the basis of 
the state of charge (SOC) and temperature data of the battery, 
modeling its charging-discharging internal resistance. The 
detailed model with parameters can be found in [17]. 

B. Blended brake system  

    The brake force distribution (BFD) should adhere to the ideal 
curve. To simplify the implementation and to avoid real-time 
modulation of brake pressure, the BFD is usually set as a fixed 
value, which is determined by the parameters of the installed 
brake devices, as shown in Fig. 6(a). The front and rear braking 
demands can be calculated as follows [17]: 

2 2b b, fw b,rwT T T                             (11) 

, / 2b, fw b dmdT T                               (12) 

,(1 ) / 2b,rw b dmdT T                            (13) 

where Tb is the actual braking torque provided by the blended 
brakes, Tb,dmd is the demanded braking torque of the vehicle, and 
Tb,fw and Tb,rw are the requested braking torque of one front 
wheel and one rear wheel, respectively. β is the BFD ratio. 

 
Fig. 6.   Brake force distribution strategy. 

    As shown in Fig. 6(b), during deceleration, the overall 
demanded braking torque of the vehicle is supplied by the 

regenerative and the friction blending braking. The overall 
braking torque is controlled to be consistent with driver’s 
deceleration intention. The reference values for the regenerative 
and frictional braking on front axle can be given by: 

, ,min(2 / , )m reg b fw g m,reg,limT T i T                      (14)
 

,2 /b, fw, fric b, fw m reg gT T T i                          (15)
 

where Tm,reg and  Tm,reg,lim are reference torque and torque limit 
of the regenerative braking of the electric motor, respectively. 
Tb,fw,fric is the frictional braking torque of the front wheel. 

C. Dynamic model of the vehicle and tyre  

    A model of vehicle dynamics with seven degrees of freedom 
has been built. The tyre model, which is of great importance for 
research on acceleration and deceleration, should be able to 
simulate the real tyre in both adhesion and sliding. In this 
article, the well-known Pacejka magic formula tyre model is 
adopted [37]. The detailed models were described in [17]. 

D. Experimental validation 

The models of the electric vehicle with its subsystems were 
implemented in MATLAB/Simulink. Experimental data 
measured from vehicle test were used for model calibration. 
Key parameters of the systems are listed in Table II. The 
feasibility and effectiveness of the models have been previously 
validated via hardware-in-the-loop experiments and vehicle 
road testing [17, 25]. 

TABLE II.  KEY PARAMETERS OF THE ELECTRIC VEHICLE. 

Parameter Value Unit 
Vehicle mass 1360 kg 
Wheel base 2.50 m 
Frontal area 2.40 m2 

Gear ratio 7.881 — 
Nominal radius of tyre 0.295 m 

Coefficient of air resistance 0.32 — 
Motor peak power 45 kW 

Motor maximum torque 145 Nm 
Motor maximum speed 9000 rpm 

Battery voltage 336 V 

Battery capacity 66 Ah 

IV.  CONTROLLER DESIGN FOR DIFFERENT DRIVING 

STYLES 

A. High-Level Controller Architecture 

    The high-level supervisory controller adopts a scheduling 
protocol, asking the architecture and control objectives of the 
low-level controller, as well as the parameters of the physical 
plant, to dynamically adapt to different driving styles, as shown 
in Fig. 7. In this study, the driving style of the automated vehicle 
can be either obtained in the manual mode through the DSR 
algorithm developed in Section II, or actively selected by 
human operator during autonomous mode. To avoid 
unexpected discontinuities in controller output resulted by 
frequent and fast transitions between different driving styles, a 
simple and reliable approach for the application is to allow the 
driving style to be actively or passively switched only when the 
vehicle is stopped, i.e. the vehicle speed v=0. 



0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2850031, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 6

 
Fig. 7.   Scheduling-protocol based hierarchical control for different driving styles. 

 

B. Low-Level Controller for different driving styles 

1) Controller for aggressive driving style: Based on the sporty 
feature of aggressive driving style, the vehicle longitudinal 
control under this condition can be seen as an acceleration 
tracking problem, realizing the sporty feel in automated driving 
for passengers. Because of its ability to address nonlinearity and 
achieve good performance with fast response [38], a sliding-
mode control (SMC) scheme is applied. 

In designing the sliding-mode controller, the error term is 
defined as: 

refe a a                                    (16) 

where ɑ and ɑref are the actual and reference values of vehicle 
acceleration, respectively. 

To guarantee zero steady error, an integral-type sliding 
surface S is chosen as: 

S edt                                      (17) 

    One method for designing a control law that derives the 
system trajectories to the sliding surface is the Lyapunov direct 
method. The following Lyapunov function is used: 

1

2
V SS                                     (18) 

    To ensure the stability of the system, the derivative of the 
Lyapunov function should satisfy the following condition: 

0V SS                                   (19) 

    Thus, if 0S  , the above stability condition can be satisfied.     
    For the purpose of controller design, a control-oriented 
longitudinal vehicle model without considering wheel slip is 
used [35]. 

21 1

2g m Da i T fg C A v
mr m

                        (20) 

where r is the nominal radius, CD is the coefficient of air 
resistance, A is the frontal area, and ρ is the air density, f is the 
friction drag coefficient, and g is the gravitational acceleration. 
    Then, substituting equations (16) and (20) into equation (17), 

when 0S  , the SMC control law can be derived as: 
2

, sgn( )
2

D
m ref ref SMC

g

C A vmr
T a fg k S

i m

 
    

 
         (21) 

where kSMC is the positive gain of the SMC controller, and sgn(S) 

is the sign function defined as: 

 
1, 0

sgn( ) 0, 0

1, 0

S

S S

S


 
 

                             (22) 

Remark 1. It is well known that in the standard SMC, the 
discontinuous sign function, sgn(S), may cause chattering when 
the state trajectories are approaching the sliding surfaces. To 
avoid this phenomenon, the discontinuous term in equation (21) 
could be replaced by a continuous function S, removing the 
chatter from the control input [39], as shown in equation (23). 

2

, 2
D

m ref ref SMC
g

C A vmr
T a fg k S

i m

 
    

 
           (23) 

2) Controller for moderate driving style: The moderate 
driving style features a balanced performance in vehicle 
dynamics and ride comfort. To this end, the low-level plant 
controller uses a combined feed-forward and feed-back 
structure, to actively damp powertrain torsional vibrations, thus 
mitigating the longitudinal jerk and enhancing drivability: 

,m ref ff fbT T T                             (24) 

where Tff is the feed-forward input term required for tracking 
and Tfb is the feedback component designed to reduce the 
control error. 
    Based on the control objective, the feed-forward term can be 
determined by the target motor torque Tm,tgt, which is calculated 
using the reference acceleration: 

,ff m tgtT T                                   (25) 

    For the feedback term, a linear proportional-integral (PI) 
controller is adopted to damp the torsional oscillation: 

'( )fb P IT K K dt e                            (26) 

'
, 02 /m tgt hs ge T T i i                             (27) 

where the feedback gains KP and KI are tuning parameters of 
the PI controller, and e’ is the tracking error. 

3) Controller for conservative driving style: Since the 
conservative drivers usually care more about energy efficiency 
and smooth driving feel by carefully operating the brake and 
acceleration pedals, the low-level plant controller adopts the 
same combined feed-forward and feed-back architecture as the 
moderate one to ensure vehicle drivability. 
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Fig. 8.   The proposed co-design optimization flow for the vehicle with three driving styles. 

 

V. DRIVING-STYLE-BASED PERFORMANCE EXPLORATION 

AND PARAMETER OPTIMIZATION 

A. Design Space Exploration 

Based on the system constrains formulated in Section II, 
namely the requirements for vehicle speed, grade-ability, and 
brake stability shown in equation (3)-(6), the boundaries of the 
related physical plant parameters can be calculated, and the 
design space is then achieved. 

B. Performance Exploration Methodology 

In order to carry out multi-objective optimization under 
different driving styles, the impacts of related parameters on the 
performance indicators should be explored. To do so, 
thefollowing exploration algorithm is proposed. 

TABLE III.  ALGORITHM FOR PERFORMANCE EXPLORATION. 
Algorithm 1: Performance Exploration 
Input: Parameter Library{P1, …, Pi , C1,…,Cj } ⊆	ξ, Event E
Output: Best Performance Point K 
   function Global Exploration (ξ, E) 
   Performance ←{}; Paras ←{}; 
    while p1∈P1 do 
         while p2∈P2 do 
                          
             while pi∈Pi  do 
                  while c1∈C1 do 
                       while c2∈C2 do 
                                        
                              while cj∈Cj do 
                              Performance ← Simulation (E, P1,..,Pi,C1,..,Cj) 
                            end while 
                        Paras ← Performance (Cj); 
                                    
                      end while 
                  Paras ← Performance (C1,C2,…,Cj); 
                end while 
            Paras ← Performance (Pi , C1,C2,…,Cj); 
                         
        end while 
    Paras ← Performance(P1, P2,…,Pi, C1,C2,…,Cj); 
  K ← Best Performance Point (Paras); 
  Return K, Paras 
end function 

 

    As shown in Table III, assuming that, within the Parameter 
Library ξ, there are several parameters, namely P1, P2,…,Pi, 
C1, C2,…,Cj, deciding one Performance. P1, P2,…,Pi represent 
parameters of the physical plant, while C1, C2,…,Cj indicate 
controller variables. Under pre-defined driving event E with 
valid design space, the selected vehicle Performance is 

simulated in the Simulink environment stepping each 
parameter with a suitably small step. After simulation-based 
global exploration, the Best Performance K with its 
corresponding value selections of the parameters can be 
attained. 

C. Driving-Style-Oriented Multi-Objective Optimization 

    1) Aggressive-driving-style based optimization: This driving 
style requires to maximize vehicle dynamic performance first 
and foremost. However, a good performance in terms of energy 
efficiency is also expected to be guaranteed. Therefore, the 
trade-off between dynamic performance and energy efficiency 
is considered, with a much greater weight on the side of 
dynamic performance. 

 1 2 3 4{ , , } arg min
reg

g SMC acc brk regE
i k t t j E    


        (28) 

 

    2) Moderate-driving-style based optimization: In this case, 
the multi-objective optimization problem is set as a trade-off 
between dynamic performance and ride comfort: 

 1 2 3 4{ , , , } argming P I acc brk regj
i K K t t j E             (29) 

3) Conservative-driving-style based optimization: As 
mentioned before, under the conservative driving style, the 
drivers’ behavior is usually mild with intentions of saving 
energy and ensuring comfort. Thus, in this mode, the trade-off 
elements are switched to ride comfort and energy efficiency: 

 1 2 3 4{ , , , } argmin
reg

g P I acc brk regE
i K K t t j E    


        (30) 

For weighting selection, a much greater value would be put 
on the side of each featured performance under different driving 
styles, and the weight on non-considered performance is set as 
zero. The difference of the weights between featured and sub-
featured performances are set to be an order of magnitude. The 
detailed set-up for the weightings under different driving styles 
is summarized in Table IV. The overall optimization flow and 
procedure are shown in Fig. 8. 

TABLE IV.  WEIGHT SELECTION FOR DIFFERENT STYLES 

Driving Style 
Weights 

ω1 ω2 ω3 ω4 
Aggressive 10 10 0 1 
Moderate 10 0 10 1 

Conservative 0 0 1 1 
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VI. OPTIMIZATION RESULTS AND ANALYSIS 

Based on the proposed co-design method, the performance 
exploration and system optimization are carried out in 
MATLAB/Simulink. The simulations are implemented 
iteratively with developed models under defined driving events 
at each operating point (i.e. each selected value of plant and 
control parameters) for the three driving styles, generating 
multiple performances. The detailed results with each driving 
style are reported as follows. 

A. Optimization results for the aggressive driving style 

Since the optimization problem under the aggressive driving 
style is formulated as a trade-off between vehicle dynamic 
performance and energy efficiency with a much greater weight 
on the side of dynamic performance, during optimization the 
interactive effects of the values of the SMC gain, the gear ratio, 
and BFD on the dynamic performance of 0-50km/h acceleration 
and regenerated braking energy are explored. 

According to the exploration results shown in the subplots (a) 
and (b) of Fig. 9, the positive gain K of the SMC controller tends 
to be small, while the gear ratio prefers a larger value in favor 
of a better acceleration performance. For the regenerative 
braking performance, the variation of the gear ratio barely 
affects the overall regenerated energy, although BFD needs to 
select a smaller value to reach a higher efficiency according to 
the exploration results. This is due to the fact that more braking 
torque demand will be distributed to the front axle, which is the 
driven axle, indicating a larger proportion taken up by the 
regenerative braking among the overall braking torque. 

  
Fig. 9.   Performance exploration results of the three driving style. 

B. Optimization results of the moderate driving style 

Based on the multiple optimization objectives under the 
moderate driving style, the trade-off between ride comfort and 

acceleration performance is considered. Taking the exploration 
scenario under a fixed value of the gear ratio at 8.3 as an 
example, and according to the results shown in the subplots (c) 
and (d) of Fig. 9, the selection of the gains in the linear PI 
controller for active damping has a great impact on the control 
performance of the vehicle jerk. With selection of KP and KI at 
1.5 and 3.0, respectively, the maximum vehicle jerk during a 
50-0 km/h deceleration process is over 10.0 m/s3. While setting 
the two parameters to 0.5 and 2.0, the maximum jerk can be 
reduced to about 8.0 m/s3, improving ride comfort effectively. 
However, the manipulation of the gains of the active damping 
controller has small influence on the acceleration performance, 
according to the exploration results. The detailed optimization 
results for parameter selection are summarized in Table V. 

C. Optimization results of the conservative driving style 

Since the controller structure of the conservative style is quite 
similar to the moderate one, the related parameters to be 
optimized (KP, KI, ig, and β) are the same. However, because the 
optimization objectives are different under these two styles, the 
values of the parameters at the end of the optimization process 
can be far different, as the subplots (e) and (f) of Fig. 9 show. 

D. Comparison and discussion 

A comparison of the above results is shown in Fig. 10. The 
aggressive style, which favors dynamic performance, 
dominates the acceleration and deceleration events among the 
three. The duration of the events of 0-50km/h acceleration and 
50-0km/h deceleration under aggressive driving are 5.36 s and 
4.16 s, respectively. The conservative style, which is in favor of 
ride comfort and energy efficiency, achieves the best 
performance in vibration reduction and regenerative braking. 
The maximum jerk under conservative driving is below 7 m/s3, 
which is around 1/3 of that in the aggressive driving. Finally, 
the moderate style, which sits in between the other two, 
achieves a good balance between dynamic performance, ride 
comfort, and energy efficiency. 

 
Fig. 10.   Optimized results for the vehicle under different driving styles. 

To compare the energy efficiency at the vehicle level with 
designed control protocols and parameter selections during 
different driving styles, the standard ECE driving cycle is used. 
According to the test data in Table VI, the energy consumption 
of the automated electric vehicle under the conservative style is 
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575.9 kJ, which improves the efficiency by over 10%, 
compared to the energy used in aggressive driving. 

TABLE V.  OPTIMIZED PERFORMANCE UNDER DIFFERENT DRIVING STYLES 

Driving Style 
Performance 

tacc 

/s 
tbrk 

/s 

jmax 

 /m/s3
 

Ereg  

/104 J 

EECE 

 /104 J 

Aggress 
CPS based 5.36 4.16 20.47 9.17 64.06 

wo CPS 5.71 4.35 19.21 9.42 63.21 

Moderate 
CPS based 7.88 6.04 11.52 10.04 60.19 

wo CPS 9.26 6.35 11.91 9.49 62.06 

Conserv 
CPS based 12.27 7.86 6.69 10.60 57.59 

wo CPS 13.56 8.28 10.13 9.35 59.21 

 
Additionally, a comparison of the results between the CPS 

based optimization and the baseline is performed. According to 
the data listed in Table VI, the vehicle with CPS based 
optimization achieves better comprehensive performances in 
vehicle dynamics, ride comfort, and energy efficiency, thanks 
to the co-design of the plant and controller parameters. This 
demonstrates the advantages of the newly proposed method 
over the conventional one. 

VII. CONCLUSIONS 

In this paper, a CPS-based framework for co-design 
optimization of an automated electric vehicle with different 
driving styles was proposed. The multi-objective optimization 
problem was formulated. The driving style recognition 
algorithm was developed using unsupervised machine learning 
and validated via vehicle testing. The system modelling and 
experimental verification were carried out. Vehicle control 
algorithms were synthesized for three typical driving styles 
with different protocol selections. The performance exploration 
methodology and algorithms were proposed. Test results show 
that the overall performances of the vehicle were significantly 
improved by the proposed co-design optimization approach. 
Future work will be focused on real vehicle application of the 
proposed methods and CPS design methodology improvement. 
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