Poster Open Access

Characterization of the NEXT-White Detector with Calibration Data

RENNER, J.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1300767</identifier>
  <creators>
    <creator>
      <creatorName>RENNER, J.</creatorName>
      <givenName>J.</givenName>
      <familyName>RENNER</familyName>
      <affiliation>Instituto de Física Corpuscular</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Characterization of the NEXT-White Detector with Calibration Data</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-06-29</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1300767</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1300766</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/neutrino2018</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The NEXT (Neutrino Experiment with a Xenon TPC) experiment will search for neutrinoless double-beta (&lt;span class="MathJax"&gt;&lt;span class="math"&gt;&lt;span&gt;&lt;span&gt;&lt;span class="mrow"&gt;&lt;span class="mn"&gt;0&lt;/span&gt;&lt;span class="mi"&gt;&amp;nu;&lt;/span&gt;&lt;span class="mi"&gt;&amp;beta;&lt;/span&gt;&lt;span class="mi"&gt;&amp;beta;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;
0\nu\beta\beta
) decay in &lt;span class="MathJax"&gt;&lt;span class="math"&gt;&lt;span&gt;&lt;span&gt;&lt;span class="mrow"&gt;&lt;span class="msubsup"&gt;&lt;span&gt;&lt;span&gt;&lt;span class="texatom"&gt;&lt;span class="mrow"&gt;&lt;span class="mn"&gt;136&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;
^{136}
Xe with a high pressure xenon gas time projection chamber (TPC). Two principle advantages of the NEXT approach are good energy resolution and topology-based event classification. We describe initial results from the first phase of the experiment, the detector NEXT-White deployed in the Canfranc Underground Laboratory in the Spanish Pyrenees, demonstrating recent progress towards sub-1% energy resolution at the &lt;span class="MathJax"&gt;&lt;span class="math"&gt;&lt;span&gt;&lt;span&gt;&lt;span class="mrow"&gt;&lt;span class="msubsup"&gt;&lt;span&gt;&lt;span&gt;&lt;span class="texatom"&gt;&lt;span class="mrow"&gt;&lt;span class="mn"&gt;136&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;
^{136}
Xe double-beta Q-value. We also present the results of a topological analysis, using electron-positron pair events in place of the two-electron events expected from &lt;span class="MathJax"&gt;&lt;span class="math"&gt;&lt;span&gt;&lt;span&gt;&lt;span class="mrow"&gt;&lt;span class="mn"&gt;0&lt;/span&gt;&lt;span class="mi"&gt;&amp;nu;&lt;/span&gt;&lt;span class="mi"&gt;&amp;beta;&lt;/span&gt;&lt;span class="mi"&gt;&amp;beta;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;
0\nu\beta\beta
, which demonstrates how such events can be distinguished from background (single-electron) events of the same energy through the use of deep neural networks (DNNs).&lt;/p&gt;</description>
  </descriptions>
</resource>
58
47
views
downloads
All versions This version
Views 5858
Downloads 4747
Data volume 98.4 MB98.4 MB
Unique views 5252
Unique downloads 4242

Share

Cite as