Software Open Access

iml: An R package for Interpretable Machine Learning

Molnar, Christoph


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Molnar, Christoph</dc:creator>
  <dc:date>2018-06-27</dc:date>
  <dc:description>Interpretability methods to analyze the behavior and predictions of any machine learning model.
Implemented methods are:


	Feature importance described by Fisher et al. (2018)&lt;arXiv:1801.01489&gt;
	Partial dependence plots described by Friedman (2001) &lt;http://www.jstor.org/stable/2699986&gt;
	Individual conditional expectation ('ice') plots described by Goldstein et al. (2013)&lt;doi:10.1080/10618600.2014.907095&gt;
	Local models (variant of 'lime') described by Ribeiro et. al (2016) &lt;arXiv:1602.04938&gt;
	Shapley Value described by Strumbelj et. al (2014) &lt;doi:10.1007/s10115-013-0679-x&gt;
	Feature interactions described by Friedman et. al &lt;doi:10.1214/07-AOAS148&gt;
	Tree surrogate models.
</dc:description>
  <dc:identifier>https://zenodo.org/record/1299059</dc:identifier>
  <dc:identifier>10.5281/zenodo.1299059</dc:identifier>
  <dc:identifier>oai:zenodo.org:1299059</dc:identifier>
  <dc:relation>doi:10.5281/zenodo.1299058</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Interpretable Machine Learning</dc:subject>
  <dc:subject>Machine Learning</dc:subject>
  <dc:subject>R</dc:subject>
  <dc:title>iml: An R package for Interpretable Machine Learning</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>software</dc:type>
</oai_dc:dc>
170
5
views
downloads
All versions This version
Views 170170
Downloads 55
Data volume 2.7 MB2.7 MB
Unique views 167167
Unique downloads 55

Share

Cite as