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Abstract

Combining the strengths of distributional and logical semantics of natural
language is a problem that has gained a lot of attention recently. We focus
here on the distributional compositional framework of Coecke et al. (2011),
which brings syntax-driven compositionality to word vectors. Using type
driven grammars, they propose a method to translate the syntactic structure
of any sentence to a series of algebraic operations combining the individual
word meanings into a sentence representation.

My contribution to these semantics is twofold. First, I propose a new ap-
proach to tackle the dimensionality issues this model yields. One of the major
hurdles to apply this composition technique to arbitrary sentences is indeed
the large number of parameters to be stored and manipulated. This is due
to the use of tensors, whose dimensions grow exponentially with the num-
ber of types involved in the syntax. Going back to the category-theoretical
roots of the model, I show how the use of diagrams can help reduce the num-
ber of parameters, and adapt the composition operations to new sources of
distributional information.

Second, I apply this framework to a concrete problem: prepositional phrase
attachment. As this form of syntactic ambiguity requires semantic informa-
tion to be resolved, distributional methods are a natural choice to improve
disambiguation algoritms which usually consider words as discrete units. The
attachment decision involves at least four di�erent words, so it is interesting
to see if the categorical composition method can be used to combine their
representation into useful information to predict the correct attachment. A
byproduct of this work is a new dataset with enriched annotations, allowing
for a more �ne-grained decision problem than the traditional PP attachment
problem.
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Chapter 1

Introduction

Two orthogonal views on natural language semantics have evolved in parallel

for about a century. The �rst one was born with the advent of mathemat-

ical logic, and reuses much of its methodology to formalize what humans

mean by a given sentence. These logical tools are very helpful to represent

the truth of a sentence, entailment relations between statements, scope of

quanti�cation and many other phenomena. However, these theories rely on

symbolic representations that remain isolated from the world they are sup-

posed to describe, making them of little practical use. On the other end of

the spectrum, distributional semantics represent words by their concrete use

cases, aggregated into numerical representations. These representations can

carry various forms of information that can be used to discover relations be-

tween words. In turn, they lack most of the reasoning capabilities of logical

semantics, for instance because they lack a notion of quanti�cation.

These two approaches have seemingly complementary features and many

models have been proposed to combine them. Among them, the distribu-

tional compositional framework of Coecke et al. (2011) brings to distribu-

tional semantics one of the most praised features of logical models: compo-

sitionality. This means that the representation of a sentence is recursively

built from the representation of its words, using the syntactic structure of the

sentence to guide composition operations. Their proposal originally used pre-
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group grammars for the syntax, but it can be adapted to other forms of type-

driven grammars such as the Combinatory Categorial Grammar of Steedman

(2000). This framework is presented in the �rst chapter of this thesis, to-

gether with brief introductions to CCG and distributional semantics.

One downside of this framework is that, unlike other distributional composi-

tional models (Socher et al., 2013; Cho et al., 2014), it has not been applied

to arbitrary sentences yet. The main reason behind this gap is the prohibitive

dimensionality of the tensors that represent each word. The second chapter

explains the issue and proposes a novel way to design parameter-e�cient

models of meaning, while preserving the theoretical guarantees of the frame-

work. By showing how to construct the free compact closed category gener-

ated by a monoidal category, we weaken the requirements on the operation

used to pair the meaning of words. This allows us to avoid uses of the tensor

product and opens up the framework to non-linearities in the composition

process. As this proposal requires some symbolic rewriting procedures to be

applied in practice, we show how an existing diagrammatic theorem prover

can be reused to perform this rewriting, and present a prototype of a tool to

design models of meaning based on it.

In the second part of this thesis, we apply the distributional compositional

model to the semantics of prepositions in English. This closed class of words

had not been covered in the distributional compositional framework before,

and it is interesting to evaluate to what extent they can be represented using

techniques originally designed for open-class content words such as nouns

and verbs. We show how the diagrams introduced in the �rst part help us

to design parameter-e�cient tensors for prepositions, a crucial step to make

their estimation tractable.

We apply our model of meaning to the prepositional phrase attachment prob-

lem, introduced in Chapter 4. This problem provides a way to evaluate the

quality of the tensors learnt, and to what extent they capture useful semantic

information. The �ne-grained syntactic analysis CCG provides in this case

leads us to model not only the attachment location of prepositional phrases,

but also its type, i.e. whether it is an adjunct or an argument for the phrase

2



it attaches to. This information was neglected by previous approaches to

the problem, but we show that it plays a signi�cant role and can be used to

tell apart the lexical and semantic interactions involved in this problem. We

extract an enriched version of the standard dataset used for the evaluation

of PP attachment techniques, and analyze the performance of our system on

it.
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Chapter 2

Background

In this chapter, we give an introduction to the �eld, covering the tools upon

which we build our approach to dimensionality reduction and to prepositional

phrase attachment. We start with a quick tutorial on Combinatory Catego-

rial Grammar, the grammatical framework we use to describe the syntax of

natural languages. Then, we introduce distributional semantics, with point-

ers to the most recent developments in the �eld. The third section combines

the �rst two by drawing a link between type-driven syntax and distributional

semantics, the core idea of the distributional compositional theory.

2.1 Combinatory Categorial Grammar

We introduce and motivate the grammatical formalism we use, Combina-

tory Categorial Grammar (Steedman, 2000), and the associated corpus of

annotated sentences, CCGbank (Hockenmaier and Steedman, 2007).

2.1.1 Combinatory rules

The traditional model of formal languages and linguistic structures relies on

syntax trees and grammars, for instance context-free ones (Chomsky, 1956).
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S

VP

walks

NP

Sandy

S

S\NP

walks

NP

Sandy

Figure 2.1: Comparison of rule-based and type-based derivations for a simple
sentence

In this Chomskyan framework, words are given atomic categories such as DT

(determiner) or NN (noun) and grammars are described by rewriting rules such

as S → NP VP (a noun phrase followed by a verb phrase makes a sentence) or

NP → DT NN (a determiner followed by a noun makes a noun phrase). The

set of rules and the lexicon describe the language modelled by the grammar.

In a type-driven framework, the categories assigned to words are more com-

plex and encode in themselves how words can be combined together. For

instance, an intransitive verb such as walks will be given the type S\NP ,
which means that once combined with an NP on its left, this word will pro-

duce a phrase of type S , as in Figure 2.1. Instead of de�ning speci�c rules for

each language, CCG relies on general type combination principles to build

syntax trees. Before we present the most important ones, let us de�ne the

structure of types.

Types are generated by a few basic types (such as NP or S ) and are closed

under two binary operators, the forward and backward slashes. These slashes

create function types, in the sense that they consume an input type (written

on the right-hand side of the slash) and produce an output type (on the

left-hand side). A phrase of type A/B can be combined with an argument

B on its right hand side to produce a phrase of type A, using the forward

application rule, and similarly for backward application:

A/B B
>

A

B A\B
<

A

In some cases it is also useful to have function composition for types, espe-

6



cially when the �nal argument is not immediately available. There are again

two versions of such a composition rule, for both forward and backward func-

tions:

A/B B/C
B>

A/C

B\C A\B
<B

A\C

The composition rules are especially useful when combined with the type

raising rules, that turn an argument into a function:

A T>
B/(B\A)

A
<T

B\(B/A)

One interesting feature of type-driven grammars is that richer types provide

a stronger link between the words and the role they eventually play in the

whole sentence: the grammar is naturally lexicalized. From a more cogni-

tive perspective, the theory is also relevant for language acquisition. If we

assume that the typing rules we have just described are universal, they could

therefore not require any learning e�ort and be part of the innate symbolic

capabilities of the human brain. Acquiring a language would just boil down

to learning a lexicon, i.e. a mapping from words to their types. Finally, as

will see in Section 2.3, using a more algebraic type system than context free

grammars makes it easier to translate the syntactic structure to a composi-

tion method for semantic representations.

2.1.2 CCGbank

To empirically test the theory of CCG on real-world sentences, train parsers

and taggers, it is crucial to have access to a gold standard of annotated

sentences.

The corpus CCGbank (Hockenmaier and Steedman, 2007) has been obtained

from the Penn Treebank by converting syntax trees to CCG type derivations.
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This process is not straightforward as the analysis provided in the Penn Tree-

bank is often much less informative than the corresponding CCG derivations,

for instance for the analysis of noun phrases, which is mostly left �at in the

Penn Treebank. To obtain the missing information, various heuristics have

been employed, introducing some noise. The treebank has later been im-

proved by Honnibal et al. (2010) who leveraged other annotation e�orts on

the treebank. Their new version, called the rebanked CCGbank, provides a

more accurate analysis of adjoints and arguments for verb phrases, and an

extension of this distinction to complements of noun phrases, among others.

2.2 Distributional semantics

Distributional semantics provide one partial answer to the long-standing

problem of representation of meaning in natural language. We �rst present

the theoretical motivation behind these semantics, and then introduce the

concrete techniques that are commonly used to implement it in practice.

2.2.1 Motivation

The semantics of natural language were at �rst dominated by logical ap-

proaches, as research in mathematical logic and philosophy of language were

originally quite close. Wittgenstein (1922) was greatly in�uenced by this

faith in formal semantics and proposed a logical theory of meaning, that he

radically dismissed a decade later (Wittgenstein, 1953). He proposed instead

a view on meaning that is now considered as the precursor of distributional

semantics.

The goal of these alternative descriptions of meaning is to link word senses

to their uses. Wittgenstein describes the meaning of a word by means of

games1, in terms of the e�ect on others incurred by the use of a word in

1His notion of game is actually very broad, it describes the interaction of two persons
and the mutual in�uence they have by communicating.
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a given context. He also rejects the traditional use of logical predicates to

model nouns and verbs, arguing that there is no precise boundary between

what is or is not a game, for instance. A more applicable version of these

ideas is proposed by Firth (1951), who claims that meaning can be related

to the set of contexts where a given word occurs.

Such a hypothesis makes it easy to learn semantics out of long corpora, by

simply collecting all the contexts in which words occur. Of course, this theory

does not specify entirely what contexts are or how they are aggregated into

one meaning, and many di�erent approaches have been proposed for con-

crete experiments. Most of them use �nite-dimensional real-valued vectors

to represent word meanings, and use various algebraic metrics (distances, dot

products) to compare them (Deerwester et al., 1990; Mitchell and Lapata,

2008; Polajnar and Clark, 2014; Kiela and Clark, 2014).

2.2.2 Counting word occurrences in contexts

One popular way to implement this theory is to consider that the context of

a word occurrence is the enclosing sentence, and associate a vector with that

context.

Concretely, we choose a set of N context words and associate each of them

with a basis vector in an N -dimensional vector space. These context words

are usually frequent content words, so that their presence in a context gives

good semantic clues for the target word they surround. The vector associated

with a context is the sum of the basis vectors associated with the context

words. Word vectors are then de�ned as the sum of all the context vectors

for the sentences where they appear (Manning and Schütze, 1999, chap. 15).

The original dimension N is usually rather large and many dimensions are

redundant or uninformative. In order to keep only the most signi�cant varia-

tion in the vectors, dimensionality reduction techniques are used. The vectors

learnt for each word de�ne a matrix M , where Mij is the number of times

word i has occurred in the same context as the context word j. We can

9



apply Singular Value Decomposition to this matrix and keep only the top n

singular values. This gives us n-dimensional vectors that are also empirically

more useful for various tasks (Deerwester et al., 1990).

The notion of context can also be changed: overall, larger contexts lead to

more topical representations, whereas smaller contexts re�ect the syntactic

roles of words (Zhao and Lin, 2005). Enforcing a greater sparsity in the

original matrix by only keeping the K most frequent context vectors for a

given word as also been shown to enhance the resulting vectors (Polajnar

and Clark, 2014).

2.2.3 Distributed models

Another way to relate contexts to word vectors is to train word representa-

tions in a supervised way, using contexts as instances of a prediction prob-

lem (Mikolov et al., 2013). This approach is often referred to as distributed

(whereas the previous one is distributional). By supervised we mean that a

prediction accuracy is optimized, although no extra information is needed to

train the model as the contexts themselves de�ne the training samples and

their target value. An interesting aspect of these models is that the word

representations and the composition structure suited for them are trained

simultaneously. A form of compositionality is hence built in the model.

Whether this approach is superior to the count-based method is still inves-

tigated. Baroni et al. (2014b) �nd that distributed models yield more infor-

mative vectors for various tasks, but Levy and Goldberg (2014) show that

the popular neural model called skip-gram can be rephrased as an implicit

matrix factorization comparable to the traditional dimensionality reduction

techniques. They show that the improvements it provides can be transferred

to count-based vectors using this analogy (Levy et al., 2015).

Predictive techniques can also be used in conjunction with syntactic struc-

tures, for instance by building recursively a neural network based on a tree

generated by a context-free grammar Socher et al. (2013). We will see in

10



Chapter 3 that distributed methods are compatible with type-driven seman-

tics.

2.3 Semantics of CCG

We have presented our frameworks for both syntax and semantics: in this

section, we relate the two. This relationship is the principle of composition-

ality which states (in a simple form) that the meaning of a compound is a

function of the meaning of the individual parts and the way they are com-

posed. This principle has been applied very early to logical semantics, for

instance by Montague (Partee et al., 1990). The search for an equivalent of

this composition in distributional frameworks is more recent and is still an

active area of research.

We present here the framework proposed in Coecke et al. (2011), which uses

type-logical grammars to relate syntactic structure and algebraic composition

operations. This approach was originally developed with a di�erent gram-

matical formalism, Pregroup Grammar, which we introduce in section 2.3.1.

We explain in the next section how this grammar relates to compact closed

categories, and how these categories can be used as models. The application

of this model to various kinds of sentences is presented in Section 2.3.2, and

the last section explains how the same tools can also help address dimension-

ality problems.

2.3.1 Compact closed categories

The problem to be solved can be stated very simply: how should we take

into account the type derivation associated with a given sentence to combine

the individual distributional word meanings into the meaning of a sentence?

The proposal of Coecke et al. (2011) is to use a category-theoretic method-

ology to link syntax to semantics. This framework was originally developped
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for pregroup grammars (Lambek, 2008; Preller and Sadrzadeh, 2011; Preller,

2005) but we will explain it here directly in the context of CCG.

We brie�y recall the notion of monoidal and compact closed categories, the

mathematical structures we use to de�ne our semantics. These notions de�ne

abstract structures, which state nothing more than the basic laws we require

on our semantic objects.

De�nition 1. A (strict) monoidal category C is:

• a collection of objects Ob C = {A,B, . . .}

• for each pair of objects A,B a collection of morphisms C(A,B) =

{f, g, . . . }

• for each object A an identity morphism 1A ∈ C(A,A)

• a composition operation ◦ : C(A,B) × C(B,C) → C(A,C), associative

and with identities as neutral elements2

• a monoid operation ⊗ on objects, with the object I as neutral element3

• for each objects A,B,C,D an operation ⊗ : C(A,B) × C(C,D) →
C(A⊗ C,B ⊗D)

such that the following equation is satis�ed when the compositions are de�ned:

(f1 ⊗ g1) ◦ (f2 ⊗ g2) = (f1 ◦ f2)⊗ (g1 ◦ g2) (2.1)

Intuitively, monoidal categories allow us to model processes applied to com-

pound systems. The monoidal operation on objects allows pairing of two

systems to form a larger system, the vertical composition ◦ allows application
of sequential transformations to a system, and the horizontal composition ⊗
applies in parallel two processes to two systems.

Let us give an illustrated example of these abstract notions. Following Co-

ecke and Paquette (2011), we can de�ne a monoidal category about cooking

2This means that for f ∈ C(A,B), 1B ◦ f = f = f ◦ 1A.
3This means that for all object A, I ⊗A = A = A⊗ I.
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recipes: objects are ingredients and pairing two objects justs consists in plac-

ing them next to each other. Morphisms transform ingredients into other

substances. For instance, we could have the morphisms mix : milk ⊗ oats →
raw porridge and cook : raw porridge → porridge. Composing these two

morphisms gives:

cook ◦mix : milk ⊗ oats → porridge

Suppose that, in addition, we want to have a toast with our porridge. Monoidal

categories allow to toast the bread while cooking the porridge: given a mor-

phism toast : bread → toast , we can take its product with cook ◦mix:

(cook ◦mix)⊗ toast : milk ⊗ oats ⊗ bread → porridge ⊗ toast

The equation (2.1) is best explained using the graphical language introduced

in Joyal and Street (1991). An arrow f : A → B is represented by the left-

most diagram in Figure 2.5. When the domain (respectively the codomain)

is the monoidal unit I, we depict f as a box without input (respectively

without output) and give it a triangular shape.

f

A

B

f

I

B

f

A

I

Figure 2.5: Representation of arrows as diagrams

The diagrams for composite arrows are de�ned as follows:
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f ◦ g

A

C

= B

g

A

f

C

f ⊗ g

A⊗ C

B ⊗D

= f g

A C

B D

Figure 2.6: Representation of vertical and horizontal compositions with dia-
grams

With these conventions, the equation (2.1) takes the very simple form below:

f2 g2

f1 g1

(
(

)
) =

f2 g2

f1 g1

( )( )
Figure 2.7: The bifunctoriality equation for diagrams

Yet, monoidal categories are not su�cient to give semantics to CCG as we

have no way to represent quotients, i.e. systems where a sub-system is miss-

ing. We introduce the notion of adjoint for that purpose.

De�nition 2. In a monoidal category, an object A is a left adjoint of B

(and B is a right adjoint of A) when there are two morphisms ε : A⊗B → I

(the counit) and η : I → B ⊗ A (the unit) such that

(1B ⊗ ε) ◦ (η ⊗ 1B) = 1B and (ε⊗ 1A) ◦ (1A ⊗ η) = 1A (2.2)

Again, we can use diagrams to make these equations clearer, provided we use

appropriate representations for ε and η:
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A B

ε =

I

B A

η =

I

A

A B A

I

I A

=

A

A

Figure 2.8: The �rst of the so-called yanking equations (2.2) in diagrams

Concretely, we will use this notion of adjoint only in symmetric monoidal

categories. In this case, right adjoints and left adjoints are isomorphic, so we

can simply ignore the direction.

De�nition 3. A symmetric monoidal category is compact closed when

every object A has an adjoint, denoted by A∗.

With this notion, we can represent the quotients of CCG on the objects. Let

us de�ne the semantics of CCG in any compact closed category C. Concretely,
this consists of a function J−K : CCGtypes → Ob C as well as a mapping

from any type derivation F to a morphism f in C. The domain of f is

JA1K ⊗ · · · ⊗ JAnK where A1, . . . , An are the premises of F , and JBK is its

codomain, where B is the conclusion of F .

The interpretation of objects J−K is de�ned inductively. We �x interpreta-

tions JAK for all basic types A (generators of the set of CCG types).

JA/BK = JAK⊗ JBK∗

JA\BK = JBK∗ ⊗ JAK

Note that the semantics of the two quotients actually coincide as the product

⊗ is symmetric. We choose to write the argument on the side where it is

expected as this notation will simplify the translation of derivations.

The semantics of derivations is also de�ned inductively: we only need to

de�ne the semantics of individual rules and the representations of composite

derivations will be uniquely determined. Table 2.1 presents these semantics,

de�ned as string diagrams. We have included the semantics of more advanced

15



Rule Syntax Semantics

Application A/B B
>

A

A B∗ B

A

Composition
A/B B/C

>
A/C

A B∗ B C∗

A C∗

Type raising A T>
B/(B\A)

A

B∗B A

Crossed
B/C A\B

< Bx
A/C

B C∗ B∗ A

A C∗

Generalized
A/B (. . . (B/C )/D) . . .

< Bn

(. . . (A/C )/D) . . .

A B∗ B C∗ D∗ . . .

A C∗ D∗ . . .

Table 2.1: Semantics of CCG rules in a compact closed category
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rules and in particular the backward crossed composition rule to show why

symmetry is needed. The crossings of the wires in the associated diagram

correspond to the use of the symmetry isomorphism A ⊗ B ' B ⊗ A. This
is a slight di�erence with the semantics of pregroup grammars where no

symmetry is assumed, and hence no crossing is allowed in the diagrams. We

refer the reader to Selinger (2011) for a very comprehensive review of the

various graphical languages associated with these enriched categories.

Let us give a concrete example of how a derivation translates to a string

diagram. Figure 2.9 gives the gold standard CCG derivation for the noun

phrase the bike that we saw. Applying the translation de�ned in Table 2.1

gives the string diagram of Figure 2.10. This diagram can be simpli�ed by

applying the yanking equality 2.2 to get the simpler form of Figure 2.11.

In particular, it is interesting to observe that the semantics of CCG we have

just de�ned preserve what is called the spurious ambiguity of CCG. This

ambiguity is not a syntactic ambiguity, i.e. two di�erent ways to understand

the syntax of a sentence, but two di�erent derivations that correspond to the

same phrase structure.

the

NP/N

bike

N

that

(NP\NP)/(S/NP)

we

NP

saw

(S\NP)/NP

NP S/(S\NP)

S/NP

NP\NP

NP

Figure 2.9: CCG derivation for the phrase the bike that we saw
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the bike that we saw

NP N∗ N NP∗ NP NP S∗ NP NP∗ S NP∗

Figure 2.10: Translation of the derivation of Figure 2.9 to a compact closed
category

the bike that we saw

NP N∗ N NP∗ NP NP S∗ NP NP∗ S NP∗

Figure 2.11: Reduced version of the diagram of Figure 2.10

A simple example of such an ambiguity is the fact that an application rule

can be replaced by a type-raising rule followed by a composition. As we can

see in Figure 2.14, the translations of the two di�erent derivations are equal.

This very useful feature of the semantics has been observed in the special

case of the category of vector spaces with the tensor product (Maillard et al.,

2014); we have just shown it categorically.

18



A/B B

A

A/B B

(A/B)\A

A

Figure 2.12: Two CCG derivations for the sequent A/B ·B ` A

A B∗ B

A

A B∗ B

A

Figure 2.13: Translations of the derivations of Figure 2.12

A B∗ B

A

A B∗ B

A

Figure 2.14: Reduced form of the derivations of Figure 2.13

2.3.2 Semantics of sentences

We have described in the previous section how to translate a CCG derivation

to a morphism in a compact closed category, conveniently represented by a

digram. We now show how this can be used to compose word meanings into

the meaning of a sentence.

The core assumption of this categorical framework is that the semantic repre-

sentation of a word is an object whose type is JT K, where T is the CCG type

of the word. This is not a straightforward assumption, as the widespread

methods to learn word representations produce vectors of a �xed dimension,

regardless of their types.
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Let us assume for now that these word vectors are known. Categorically, we

have morphisms vi : I → JTiK for each word vi of type Ti. The meaning of

the sentence is de�ned as the composition of the word meanings with the

type reduction: f ◦ (v1⊗ · · · ⊗ vn), where vi is the vector for the i-th word in

the sentence, and f is the type reduction.

N

Clouzot

N∗ ⊗ S ⊗N∗

directed

N ⊗N∗

an

N ⊗N∗

Italian

N

movie

Word
semantics

Type
reduction

S

I I III

This is the main assumption of the categorical approach to compositional se-

mantics. The concrete nature of the semantic representation depends on the

category chosen. Our goal is to be able to compose distributional semantics,

and we will hence use the category proposed in Coecke et al. (2011): objects

are vector spaces, the monoid operation is the tensor product, and functions

are linear maps.

Concretely, using this category means using the following recipe to compute

meanings:

• Take the tensor product of word meanings V =
⊗

i vi

• Translate the CCG type reduction to a string diagram as de�ned in

Table 2.1.

• For each cup (or counit) in the string diagram, apply tensor contraction

at the source and target of the cup.

This is a naive recipe because the computation of V requires a space expo-

nential in the number of types. We will show later how we can make this

20



algorithm more e�cient.

This theory of semantics is elegant, but it remains to be shown why this

semantic composition is a sensible way to derive the meaning of a sentence.

This problem is far from solved and still being actively investigated. We give

here some insights about the pros and the cons of the theory.

One �rst argument for this categorical framework is that it coincides to some

extent with another theory developed independently. Baroni and Zamparelli

(2010); Baroni et al. (2014a) argue that words should have di�erent repre-

sentations depending on their type. They propose to model nouns as vectors

and adjective as matrices, the representation of an adjective-noun compound

being the product of the matrix and the vector associated to the words. It

turns out that this is exactly what the categorical framework proposes for

this particular case.

N ⊗N∗

Italian

N

movie

II

==

Figure 2.15: Correspondance between tensor contraction and function appli-
cation

Figure 2.15 shows how the tensor contraction proposed by the categorical

framework can be seen as a function application in the case of a second-order

tensor. The leftmost diagram represents the tensor contraction based on the

type reduction. Let us de�ne a morphism, whose string diagram is the box

in the center of the �gure. We can reinterpret the same computation as the

composition of an element and this morphism, i.e. the multiplication of a

vector by a matrix, as shown in the right-hand side. Conversely, any matrix

can be seen as a second-order tensor.
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Another argument why this composition method is sensible are the concrete

results obtained on practical tasks, such as the experiments of Grefenstette

and Sadrzadeh (2011), showing that the model achieves a good performance

on some sentence similarity tasks.

A third reason is the connection with logical models of meaning. It was

noticed by Coecke et al. (2011) that if the coe�cients of the vectors and the

tensors are restricted to {0, 1}, we recover a sort of logical semantics. This

connection between two very di�erent paradigms has been explored (Preller,

2013; Preller and Sadrzadeh, 2011) and has led to interesting analogies. Let

us explain one about adjectives. To recast a logical model of meaning into

vector spaces, it is common to assume that the space for nouns N has one

basis vector for each object in the domain of discourse.

For the sake of example, let us say that we have 4 such vectors: eDiana, eMike,

eAmanda, eJoshua. With this convention, a common noun is represented by

a vector: the sum of the basis vectors whose denotation as an instance of

this common noun. In our example, the noun man would get the vector
−−→man =

(
0 1 0 1

)
. Then, a noun adjunct such as married can be modelled as

a projection4, whose image is the vector space spanned by the basis vectors

where the predicate holds. Assuming that in our case only Diana and Mike

are married, we get
−−−−−→
married = Diag( 1 1 0 0 ). Applying the matrix

−−−−−→
married

to the vector −−→man, we get the vector
(
0 1 0 0

)
, which represents indeed the

set of married men.

Although distributional models of meaning are very di�erent, the insight

that adjectives should be projections can be kept to some extent (Grefen-

stette et al., 2014). For instance, it has proved useful to estimate adjectives

as
∑

i ui ⊗ ui, where the ui are the n example vectors the adjective is ap-

plied to in a corpus. This is a quite similar expression: if (ui)i were an

orthonormal basis, the estimated matrix would be a projection. Similarly,

other approaches (Fried et al., 2015) minimize the rank of the estimated ten-

sors: such a minimization can be seen as constraining the dimension of the

4A projection is a linear map f : N → N such that f ◦ f = f . Such a map is the
identity on Im f ⊆ N and the null morphism on Ker f ⊆ N , with Im f ⊕Ker f = N .
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image while trying to preserve the outputs of the predicate, which is similar

to the estimation of a projection.
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Chapter 3

Dimensionality reduction with

diagrams

In this chapter, we address one of the major challenges of the distributional

compositional framework, namely the dimensions of the tensors that we

would need to estimate in order to provide a wide coverage semantics of

English.

We �rst review the various attempts to reduce the number of parameters

of tensors. Then, we propose a novel use of diagrams to design parameter-

e�cient models, using the notion of free compact closed category generated

by a monoidal category. This work has been presented at the Advances in

Distributional Semantics workshop of the International Conference on Com-

putational Semantics (IWCS 2015). Finally, we show how our proposal could

be concretely implemented, and present the tool we have developed.

3.1 Dimensionality issues

While the CCG types considered in this thesis are relatively short, CCGbank

contains many types that are very long. For instance, here are a few types

with their number of occurrences:
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3176 ((S\NP)\(S\NP))/((S\NP)\(S\NP))
232 (((S\NP)\(S\NP))\((S\NP)\(S\NP)))/NP
84 (((N /N )/(N /N ))/((N /N )/(N /N )))/(((N /N )/(N /N ))/((N /N )/(N /N )))

If we want to use the categorical framework to derive the meaning of sentences

including these types, we need to estimate tensors for the words occurring

with these types. As dimA⊗B = dimA×dimB, the number of parameters to

estimate for these tensors is enormous: assuming that NP and S are mapped

to the same vector space of dimension d, the dimension of the tensor spaces

induced by the types above range from d6 to d16. Although these long types

are relatively infrequent, there are a lot of them: the rebanked CCGbank

contains 440 types of length more than 5, and they make up 4% of the type

occurrences.

In fact, dimensionality issues are encountered even for shorter types. For

instance, a lot of e�ort has been put into reducing the number of parameters

for transitive verbs, which have type (S\NP)/NP , of order 3 (Kartsaklis

et al., 2012; Polajnar et al., 2014; Fried et al., 2015).

There are various ways to do so. The simplest way is perhaps to use a plau-

sibility space (Polajnar et al., 2014) for the vector space associated with the

sentence. This consists in representing sentence values by single real num-

bers, representing how plausible the sentence is, by analogy with the truth

values of logical semantics. As the dimension of the sentence space is hence

1, this automatically reduces the dimension of the verb space to (dimNP)2:

verbs become matrices instead of third-order tensors. In some experiments,

the dimension of the sentence space is actually two, so that negation can

be implemented as swapping the two dimensions. Such a representation is

not suited to all applications however, and in particular not the one we are

interested in, as we will see in Section 4.3.2.

When we need proper vector representations for sentences, one way to extend

the plausibility space approach is to make use of a Frobenius algebra to

expand the sentence space. Concretely, this consists in composing the verb

matrix with the linear map ei 7→ ei⊗ei, where (ei)i is an orthonormal basis of
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the noun space. This copies the subject or object vectors back to the sentence

space, weighted by the plausibility given by the matrix. Suppose we have a

plausibility matrix
∑

ij Pij ·ei⊗ej. Applying the Frobenius copy operator on
the subject, we get a third order tensor

∑
ij Pijei⊗ei⊗ej. If the sentence space

is equal to the noun space, this is indeed a suitable tensor for a verb, in terms

of dimensions at least. The meaning of a subject verb object sentence will

then become
−−−−→
subject� (P (

−−−→
object)), where � is the component-wise product

of vectors. This method, as well as the symmetric one for the object, has

been proposed by Grefenstette and Sadrzadeh (2011) and Kartsaklis et al.

(2014). They also use the Frobenius operator on both subject and object,

leading to a larger sentence space S = N ⊗ N . This way to expand the

sentence space might look slightly ad-hoc at �rst, but is in fact motivated

by analogies with logical models of meaning (Sadrzadeh et al., 2014), and is

supported by experimental results on sentence similarity (Grefenstette and

Sadrzadeh, 2011).

Another line of work consists in restricting the interaction between the sub-

ject and object of a verb. For instance, Polajnar et al. (2014) propose to

apply two di�erent matrices to the subject and object, and then concatenate

the vectors obtained to get the sentence vector. In other words, the sentence

vector is obtained by

−−−−−→
sentence =

(
A 0

0 B

)( −→
sub
−→
obj

)
(3.1)

The verb is hence a function f : N ⊕ N → S, where ⊕ is the direct sum

(or cartesian product) of vector spaces. If n is the dimension of the noun

space and s is that of the sentence space, this method (called 2Mat) reduces

the number of parameters to estimate from sn2 to 2sn, and it happens to

improve the performance of the representation for their task.

Due to the concatenation operation however, 2Mat cannot be directly recast

within the original framework. The theory states that verbs have to be linear

maps of the form N ⊗ N → S, taking the subject-object pair as a tensor
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and returning the sentence representation. What 2Mat provides here is a

linear map N ⊕ N → S taking the subject-object pair as a concatenation

of the two vectors, and returning the sentence representation. The two are

incompatible, because there is no function f : N ⊗N → N ⊕N such that for

each u, v ∈ N , f(u ⊗ v) = (u, v), where (u, v) denotes the concatenation of

u and v. Such a function does not exist for instance because for all u ∈ N ,

f(u ⊗ 0) = f(0)). This is a limitation of the categorical framework that we

will overcome in the next section.

A third approach is the rank minimization technique of Fried et al. (2015)

mentioned earlier. They constrain verb tensors to have at most rank r,

which means that they can be written as
∑k

i=1 ui ⊗ vi ⊗ wi for some vectors
(ui, vi, wi)1≤i≤r. For small values of r such as 20, this dramatically reduces

the number of parameters while preserving an equivalent performance on

sentence similarity tasks.

3.2 Semantics with monoidal categories

The categorical framework is mathematically elegant, and has impressive

connections with both foundations of quantum physics (Coecke et al., 2011)

and cognitive science (Clark et al., 2008). However, this does not make

it automatically linguistically relevant. For instance, we have seen in the

previous section that it leaves out e�cient models of meaning such as the

2Mat approach of Polajnar et al. (2014). Hence, it is interesting to assess

what we really assume about distributional semantics when we state our

recipe to derive the representation of a sentence.

One of the striking features of this framework is that it describes how to

compose word representations together, without knowing what the vectors

actually represent. The estimation of the model parameters is left unspec-

i�ed, and although the vectors and matrices have been mainly estimated

using distributional techniques, nothing prevents us from using other mod-

els, such as topics learnt with Latent Dirichlet Allocation (Blei et al., 2003)
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or neural networks. In fact, this has been done for neural networks by Mila-

jevs et al. (2014) and comparable performance is reported. This generality is

appealing, but also suspicious: how could it be possible to devise a sensible

way to compose vectors if we do not know what the vectors are? We would

intuitively expect that the meaningful operations to combine neural embed-

dings or LDA topic distributions would be quite di�erent. In this section, we

introduce a way to make the categorical framework more �exible, adapting

the composition operations to the properties of the vectors we manipulate.

First, let us summarize the core assumptions of the categorical approach.

Following the simple recipe to derive the meaning of a sentence given in Sec-

tion 2.3.2, we could give the following summary, putting aside computational

considerations:

Composition in the category of vector spaces with the tensor

product

The representation of a sentence can be obtained by taking the tensor

product of the word meanings and applying tensor contraction as indi-

cated by the type reduction.

As we have seen in the last section, this leaves out parameter-e�cient ap-

proaches such as 2Mat. More generally, it forbids additive compositions for

other grammatical roles than verbs, even if they are sometimes legitimate

given the structure of the vectors used.

For instance, Mikolov et al. (2013) uncover a relation between their word

vectors: they report that the nearest neighbour1 of −−−→queen −
−−→
king + −−→man is

−−−−→woman, and that similar patterns can be observed for semantically relevant

analogies, such as
−−−−→
biggest −

−→
big +

−−−→
small '

−−−−−→
smallest or

−−−→
Rome −

−−−→
Italy +

−−−−→
France '

−−−→
Paris. If such relations are widespread enough, we want to model

the meaning of an adjective such as female by a map adding the vector

1The nearest neighbour is here the closest noun vector for the L2 norm.
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−−−−→woman−−−→man to its argument:

−−−−→
female : v 7→ v + (−−−−→woman−−−→man)

With this de�nition, we get indeed that
−−−−→
female(

−−→
king) ' −−−→queen and

−−−−→
female(−−→man) =

−−−−→woman. More generally, we might want some words to combine the vectors

of their various arguments by summing them.

Hence, our �rst formulation of the categorical assumption is too restrictive.

Luckily enough, category theory allows us to formulate it in a more general

way, so that we can use any compact closed category for our semantics, not

just the category of �nite-dimensional vector spaces with the tensor product

as monoidal operation:

Composition in any compact closed category

The representation of a sentence can be obtained by taking the tensor

product of the word meanings and applying tensor contraction counits as

indicated by the type reduction.

This is more general, but it is not clear yet what �exibility it brings. In gen-

eral, constructing an ad-hoc compact closed category is complicated as this

is a rather rich structure with many identities to satisfy. In the remainder of

this section, we show how monoidal categories can be turned into autonomous

categories, and how this can solve the problem raised in the example above.

We give an informal explanation of the construction, a mathematical formali-

sation can be found in Delpeuch (2014). The main idea is to de�ne a category

whose morphisms are diagrams themselves, where the nodes are labelled by

morphisms from the original category. In these diagrams, we allow ourselves

to use units and counits even when there is no corresponding morphism in

the original category.

For instance, given a morphism f : A × B → C in a monoidal category

(C,×, I), we can de�ne the following morphism f̃ : 1 → A∗ · C · B∗ in the

free compact closed category (C̃, ·, 1) generated by C:
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A∗ C B∗

f

1

f̃ :=

Intuitively, this morphism represents the original function f , with the inputs

converted to outputs. This is very similar to the correspondence between

tensor contraction and function application of Figure 2.15 except that in

this case, the tensor is only a symbolic object. In this state, it is not very

useful as we cannot use it in numerical computations. However, we can use

it formally to de�ne semantics that will eventually become numerical, thanks

to the following theorem:

Theorem 1 (Blute et al. (1996)). Let f be a morphism in the free compact

closed category generated by C. If its domain and codomains are products of

objects of C, then it is equal2 to a morphism in C.

Let us show how this can be used in practice. In the example above, our goal

was to be able to sum distributional representations, so let us de�ne the cat-

egory Aff, whose objects are �nite-dimensional vector spaces and morphisms

are a�ne3 maps between them. We will equip this category with the direct

sum ⊕ (or cartesian product) as monoidal operation. Concretely, this means

that pairs of vectors are constructed by concatenating the vectors instead of

taking their outer product. Let N and S be the vector spaces associated with

noun phrases and sentences respectively. The sum operation of vectors in N

is a morphism in Aff: + : N ⊕N → N := (u, v) 7→ u + v. We can therefore

analyze the sentence Pat plants female seeds as shown in Figure 3.1.

2Technically speaking, this theorem is more accurately stated by saying that the left
adjoint (free functor) in the free-forgetful adjunction is full.

3An a�ne map is a map f : x 7→
−→
f (x)+ b where

−→
f is a linear map and b is a constant

vector.
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N

Pat

N∗ S N∗

plants

N N∗

female

N

seeds

S

f1 +

=

S

f1

+

Figure 3.1: Semantics of adjectives with a free compact closed category

In the left-hand shape, the diagram cannot be used to compute the represen-

tation of the sentence, because the units and counits do not correspond to

actual morphisms. Theorem 1 guarantees that we can eliminate them using

the yanking equalities (2.2), and get the representation on the right-hand

side, which is a valid diagram for a monoidal category. We get the expected

representation for female: it adds a vector to its argument.

Similarly, we can now represent the 2Mat approach:

N N∗ S S N∗ N

I shot sheri�s

A B

We have applied this construction to allow for a�ne maps, but in fact it

can be used with any monoidal category. In particular, we can even add

non-linearities, leading us to type-driven neural models of meaning. Let

σ : R → R be a nonlinearity. We de�ne the category Netσ as the monoidal

category generated by σ and a�ne maps. Any neural network using σ as

nonlinearity can be written as a series of compositions and pairing of a�ne
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maps and σ and are hence arrows in Netσ.

f

g

σ σ σ σ σ

(a) An arrow in Netσ.
f and g are a�ne maps.

x1 x2 x3 x4

h1 h2 h3 h4 h5

y1 y2

Input layer

Hidden layer

Output layer

(b) Its traditional representation as a

neural network

Figure 3.2: A categorical neural model of meaning in pictures

There are various reasons why using this model of meaning could be inter-

esting. First, because it gives us some freedom in the functions we can use

to combine meanings. The class of neural networks with one hidden layer

can approximate any continuous function, with respect to the uniform norm

on a compact set. This result has been obtained �rst by Cybenko (1989)

for the case where σ is the sigmoid, a popular choice of activation function

(σ(x) = 1
1+e−x ) and has been generalized to any non-constant, continuous and

bounded function by Hornik (1991). Of course, we could also directly use

the monoidal category of such functions and freely generate the autonomous

structure on it, but for concrete applications we need a �nite parametrization

of the objects we consider, and neural networks provide one.

Second, this result provides a way to de�ne the representation of a sentence

as a neural network whose shape depends on the syntactic structure. This is

analogous to the syntax-driven convolutional neural network of Socher et al.

(2013), where the sentence vector is recursively computed by neural networks

at each node of the parse tree (using a Context Free Grammar).
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3.3 Diagrammatic rewriting

In this section, we explain the importance of diagrammatic rewriting and

give an overview of the tools we need for it.

Diagram rewriting consists in using equalities of functions written as equal-

ities of diagrams to simplify the representation of a sentence. As we have

seen in Section 2.3.1, the sequence of units and counits4 induced by trans-

lating the CCG derivation to a compact closed category can be simpli�ed by

using the yanking equalities. This is witnessed in particular by the di�erence

between Figures 2.10 and 2.11.

If we were to implement the categorical framework for arbitrary sentences,

this diagrammatic rewriting would be crucial as it eliminates tensor expan-

sion and contractions. For instance, if we translate naively the right hand side

of Figure 2.13 in terms of tensor operations, we need �rst to expand theB ten-

sor, and then perform a double tensor contraction. If we simplify the diagram

�rst, we get the diagram on the left hand side, which requires only one tensor

contraction. In particular, it is worth noting that the intermediate result be-

fore tensor contractions in the naive recipe has dimension (dimA)3(dimB)2,

whereas the original tensor had dimension (dimA)(dimB)2. This is our �rst

example of how diagrammatic rewriting can serve distributional semantics:

simply as a way to optimize computations. As most experiments carried

out currently within the framework involve a �xed sentence structure, this

rewriting is implicit, but we belive it is necessary for any attempt to deal

with unrestricted parses.

In the case of the monoidal semantics de�ned in the previous section, dia-

grammatic rewriting is even not an optimization of the computation, it is

mandatory for the computation itself. As the units and counits introduced

by the construction have no interpretation in terms of concrete operations

carried out on the vectors we manipulate, it is necessary to eliminate them

�rst using the yanking equations.

4Units and counits are equivalently the tensor expansion and respectively contraction,
if we use the traditional tensor-based model.
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A concrete implementation of this proposal would hence require symbolic

manipulation tools. This is where the use of category theory becomes use-

ful: as the mathematical language we use is shared with other �elds, we can

reuse tools built for other purposes. In particular, the foundations of quan-

tum physics also use diagrams in monoidal categories to model operations

on quantum systems (Coecke, 2009). In this �eld, diagrammatic rewriting

is used to give proofs of correctness of quantum algorithms and can be au-

tomated, using a software package called Quantomatic (Dixon et al., 2010).

This software is generic enough to be used to perform the diagrammatic

rewriting we need, as shown in Figure 3.3. In this graphical interface, green

nodes represent morphisms from the original category, i.e. those we know

how to compute and compose. The red nodes represent units and counits in-

troduced by the construction. By applying successively the yanking equation,

Quantomatic eliminates these formal units, until only green nodes remain.
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Figure 3.3: Automatic rewriting of Figure 3.1 with Quantomatic (screen shots from the graphical interface).
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Chapter 4

The prepositional phrase

attachment problem

In this chapter, we apply the distributional compositional model to study

a particular form of syntactic ambiguity, the attachment of prepositional

phrases. A prepositional phrase (PP) is a constituent whose head is a noun

or verb phrase and is introduced by a preposition. By de�nition, prepositions

occur before the constituent they introduce, such as in to the river or in

the news. Words with the same role can occur after the constituent they

dominate, in which case they are called postpositions, as in an inner roadway

a half-block away. As prepositions are much more common in English, we

still call phrases with postpositions prepositional.

These phrases can occur in various constructions, for instance to modify

nouns phrases, verb phrases or sentences. They can be coordinated, nested

and extracted. They can hence introduce some ambiguity in the sentence

structure, and the prepositional phrase attachment problem focuses on a

particular kind of ambiguity, described in Section 4.1. Many learning strate-

gies have been tried to predict how this ambiguity should be resolved, and

Section 4.2 presents the main lines of research. In the last section of this

chapter, we take a closer look at the treatment of prepositions in CCGbank,

and analyse what it implies for the semantics.
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4.1 Analysis of the problem

The PP attachment problem occurs when a verb is followed by a noun phrase,

a preposition, and a noun phrase again. Two interpretations are usually

possible:

VP

NP

PP

NP

mushrooms

Prep

with

NP

rice

V

eat

VP

PP

NP

friends

Prep

with

VP

NP

rice

V

eat

Figure 4.1: Two possible readings for the target phrase

The two interpretations often carry a quite di�erent meaning and are hence

not an artifact of a particular theory of syntax. This ambiguity is resolved

seamlessly by humans but is a challenge for parsing technology as this deci-

sion is often made based on the plausibility of the meanings associated with

the two parses.

As a side note, the ambiguity is also present for postpositions, as they can

modify both verbs and nouns. For instance, the following sentence is formally

ambiguous, as two years ago could be applied to place.

The interviews took place two years ago.

4.1.1 Ambiguity beyond the attachment location

Due to the importance of this disambiguation for accurate parsing, the prob-

lem has received a lot of attention and has been standardized as we have

presented it. From a machine learning perspective, the problem is to create
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the best binary classi�er that predicts whether the preposition attaches to

the verb or to the noun.

But in fact, the attachment location is not the only ambiguous property of

parses, as Merlo and Ferrer (2006) points out. A prepositional phrase at-

tached to a verb can either modify the verb phrase, giving extra information,

or be a mandatory argument to the verb. For instance, in the sentence She

runs in a park, the phrase in a park is an adjunct (or modi�er), whereas to

a park is an argument in She goes to a park. Although the linguistic tests

used to determine the role of a prepositional phrase do not always provide a

clear distinction between these two cases, the notion is widely accepted.

As we will see in Section 4.3, it is possible in CCG to make a di�erence

between these two kinds of attachment, and to give them di�erent semantics.

The distinction is also important from a cognitive perspective. There has

been a long running debate about the purely syntactic biases that could in-

�uence attachment decisions. For instance, it has been suggested that readers

are biased towards noun or verb attachments, or that they prefer structures

where the attachment creates the fewest additional syntactic nodes (Frazier,

1978), for instance. These criteria do not correlate very well with experi-

mental evidence. A more plausible criterion relies on the distinction between

argument and adjuncts. Abney (1989) and Schütze (1995) argue that struc-

tures where a given prepositional phrase is an argument are preferred over

those where it is an adjunct. They give the following sentence as example:

He thought about his interest in the Volvo.

Although in the Volvo could apply to the thinking, interest expects an argu-

ment introduced by in, hence noun-argument attachment is preferred. This

can be intuitively understood considering that words accept a restricted set

of prepositions to introduce an argument, and these arguments carry an im-

portant part of their meaning.

39



4.1.2 In�uence of context

Another important caveat to bear in mind when considering the PP attach-

ment problem is that we focus on one very particular kind of ambiguity. We

do so because it is very widespread, but concretely it occurs in sentences

where other forms of uncertainty might accumulate, or reduce the overall

ambiguity of the sentence.

The �rst computational approaches to the problem (Hindle and Rooth, 1993;

Ratnaparkhi et al., 1994) have progressively de�ned the PP attachment prob-

lem as a very particular machine learning problem. Samples are tuples (verb,

noun_1, preposition, noun_2) where noun_1 is the lexical head of the ob-

ject of the verb, noun_2 is the head of the object of the preposition. The

task is to predict whether the preposition attaches to the noun or the verb.

Such a setting simpli�es the problem in the sense that the information to

be processed by the classi�er is much simpler than if it had to rerank full

parses. This helps to focus to the problem itself, and compare new approaches

to previous ones easily as the task is independent from the grammatical

framework used or the parser being used.

However, this problem is arti�cial. Atterer and Schütze (2007) argue that

the �nal goal is to improve parsing accuracy and warn that the performance

of such a simple classi�er is quite unrelated to the improvement it can bring

to a wide coverage parser. In fact, this reduced problem is actually harder

than attachment decisions in context, because of the progress made in pars-

ing technology since this period. Parsers are more lexicalized, and other

syntactic constraints help them to make the right choice. For instance, in

CCGbank, a large proportion of the cases where a verb has both an object

and a prepositional adjunct happen inside relative clauses where there is

actually no ambiguity at all:

The �rst of the three $200 million ships that Carnival has on order

This is a case where a prepopsitional phrase, on order, applies to a verb

phrase with an object, but where there is no ambiguity as the object is
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located elsewhere.

Although this criticism against a stand-alone classi�cation task is indeed

justi�ed, we will still deal with the problem independently from parsing, for

various reasons. The �rst one is that it allows for a simple comparison with

many other approaches, and that it is simple to implement. The second one

is that our goal is not to build a system that performs better than the state-

of-the-art on this arti�cial task, but rather to evaluate the relevance of the

distributional compositional framework for a particular syntactic structure.

In the long term, we would like to know whether the categorical composition

described in the previous chapter is suitable for wide coverage applications.

The properties of some simple composition cases such as adjective-noun or

subject-verb-object have been thoroughly studied, but little work has been

carried out on closed-class function words such as prepositions. The only

works we are aware of are models of negation (Hermann et al., 2013) and

of relative pronouns (Clark et al., 2013). None of them estimate closed-

class words from data but rather propose a distributional analogue of logical

operators.

4.2 Related work

The problem of PP attachment has been tackled by many researchers using

a variety of techniques. We survey here the main types of approaches, �rst

starting with classical supervised methods. They apply a standard classi�-

cation technique to predict the attachment based on features extracted from

the data itself.

As the attachment decision often requires semantic information, these clas-

si�ers have been augmented with data extracted from ontologies. We review

these extensions in the second section.

The use of these handcrafted information sources is not very satisfying, as

they are expensive to create and have an inherently low coverage. Recently,

the development of distributional techniques has enabled researchers to re-
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place these features with unsupervised vector representations. We will cover

these approaches in the last section.

4.2.1 Supervised learning

The syntactic criteria to predict attachment decisions mentioned in 4.1.1

yield poor classi�ers: the particular words involved in the ambiguity are

important to predict the attachment. Although it is hard to capture what

aspect of these nouns drive the decision process, it is possible to collect

statistics from a gold standard. The �rst attempts to guess automatically

the correct attachment of a preposition, such as Hindle and Rooth (1993),

relied on counting the number of times a preposition had been seen attaching

to a given verb or noun. These counts were collected from parses generated

by the Fidditch parser on an originally unannotated corpus. This parser

produces incomplete parses, and in particular many prepositional phrases

are left unattached when the syntax is ambiguous. Few errors are hence

introduced in the training data by this preprocessing step.

The problem with this approach is that it only focuses on some particular fre-

quency counts, whereas counting other combinations of words could be useful

in some instances. This feature selection problem is solved in Ratnaparkhi

et al. (1994) by using a maximum entropy classi�er whose feature set is iter-

atively expanded. Their classi�er has access to the tuple of (verb, noun_1,

preposition, noun_2) and can count any combination of such words. Relying

solely on words is not robust as two synonyms are treated as incomparable

words. Their approach to word grounding uses the word clustering algorithm

of Brown et al. (1992), whose byproduct is binary representation for words

that encodes some semantic information about the words. Integrating fea-

tures using these binary representations helps them to increase the accuracy

of their maximum entropy classi�er.
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4.2.2 Ontology-based approaches

To integrate even more semantic information, one can use hand built re-

sources such as ontologies. This information can be used in various ways.

Brill and Resnik (1994) use WordNet to learn attachment rules based on the

semantic classes of the words involved. Knowing that anchovies and cheese

are both edible makes it easier to generalize the training example They eat

a pizza with cheese to predict a noun attachment for the sentence They eat

a pizza with anchovies.

In Bailey et al. (2015), VerbNet provides information about selectional pref-

erences for the verbs. By combining this with the hypernymy hierarchy pro-

vided by WordNet, they can leverage the bias towards argument attachment

to increase the accuracy of their logistic regression classi�er. For instance,

the sentence We base our analysis on this review can be parsed using a verb

attachment, knowing that all the frames in the VerbNet class base-97.1 in-

volve an argument introduced by on. In more complex cases where the type

of the complement plays a role, WordNet helps them to relate the word to

glosses in VerbNet frames.

These approaches are powerful because they have access to a very rich and

structured source of information. But acquiring this knowledge is expensive

and has not been done for most languages. Moreover, such a hard classi�-

cation between word senses and frames could prove too rigid or sparse for

sentences in di�erent domains, even in the same language.

4.2.3 Unsupervised learning

Unsupervised approaches have been devised to replace ontologies by statisti-

cal models acquired from data. They often rely on the techniques introduced

in Section 2.2 to ground words and learn relations between them.

The classi�er of Zhao and Lin (2005) uses distributional word representa-

tions for all four words in the samples and uses Nearest Neighbours on these
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vectors. The distance between two samples is de�ned as the sum of the

pairwise distances of the vectors. To combat data sparsity, they gradually

increase their beam as long as it does not contain enough samples to predict

the attachment. The vectors themselves are trained using a short context

window, so that they capture more syntactic similarities. They also train

vectors using dependency relations instead of bare proximity-based contexts

and observe an increase in accuracy. This approach yields state-of-the-art

accuracy (86.5%) but it is not clear how the same ideas could be used for

other forms of syntactic ambiguities.

The parse reranker of Belinkov et al. (2014) uses vector representation for

words, learned with the distributed models of Section 2.2.3. These neural

embeddings are used as word representations for all four words involved in

the attachment decision. The vectors are then used as inputs for a neural

network whose shape depends on the parse tree considered. The outputs of

these two di�erent neural networks are then scored using a linear function

and compared, so that attachment is predicted for the structure that gets

the highest score.

As the vectors they use have originally been trained to maximize another

objective function, they tweak their vectors by gradient descent on their

objective function. They also note that if the original vectors are trained

using syntax-aware models, the performance on PP attachment increases.

Their evaluation method relies on the integration of their classi�er in a parser,

using parsing accuracy as the score they want to maximize. To compete

with state-of-the-art parsers, the word vectors are not su�cient: they need

to integrate information from WordNet and VerbNet.

A third way to obtain topic-based representation for words is to use Latent

Dirichlet Allocation, a Bayesian model where latent variables de�ne topics.

A modi�ed version of this model has been used in Emerson and Copestake

(2015) to learn topics for dependency relations. Each type of dependency

relation is treated as a document in the original LDA formulation, and words

are replaced by pairs of source-target words linked by the relation. The

source and target words are emitted from topics, using dedicated probability
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distributions over the vocabulary. Attachment decisions are then made by

comparing the likelihood of the dependency relations for each attachment

site. This method proves e�ective to improve the accuracy of PP attachment

over a simple frequency-based baseline.

4.3 Prepositions in CCGbank

In this section, we review the treatment of prepositions in CCG, using the

conventions of the rebanked CCGbank. We show that a fairly rich account of

the various roles they can play is possible thanks to this type-driven approach.

In Section 4.3.2, we show how these syntactic choices in�uence the seman-

tics. These consequences are not just technical constraints imposed by the

framework but actually correspond to the semantic compositions we expect

given the syntax, except for some cases of the use of the PP type.

4.3.1 Types and their use cases

Prepositions are a good example of the fundamental di�erence between Con-

text Free Grammars and Combinatory Categorial Grammar, because these

few closed-class words can be observed with many types. The type given to a

preposition (and the other words involved in the phrase) already determines

much of the properties of the attachment discussed in Section 4.1. This is

useful because in a statistical parser, the probability for a word to have a

given type will depend on many lexicalized features. Yet, this is a tough

decision for a tagger as some global view on the sentence is required to pre-

dict the correct tag. This requires a richer interaction with the parser than

a simple pipelined approach (Clark and Curran, 2007).

We review in Table 4.1 the most frequent types with which prepositions can

be found and analyze the properties of the attachment involved. The �rst

column indicates the number of occurrences of each type, in the rebanked

CCGbank. The properties of the attachment implied by the type are given
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in the third and fourth column: location refers to the type of phrase the

prepositional phrase attaches to, and relation indicates whether this type

implies an argument or adjunct attachment. To understand better how these

types work, we give some examples taken from the corpus in the last column.

Let us analyze the cases of verb attachment �rst. The type ((S\NP)\(S\NP))/NP

can look a bit cumbersome at �rst, but becomes much clearer when we set

VP:=S\NP : it becomes (VP\VP)/NP , i.e. a word that becomes a VP right

adjunct once combined with a NP on its right. In the context of an attach-

ment problem, tagging the preposition with this type will hence imply a verb

attachment. It also implies that the prepositional phrase1 is an adjunct for

the VP , as it modi�es the full verb phrase.

S

S\NP

(S\NP)\(S\NP)

NP

losses

((S\NP)\(S\NP))/NP

after

S\NP

NP

millions

(S\NP)/NP

totaled

NP

Pro�ts

1In this section, we stop using the PP abbreviation for prepositional phrase, because it
could be confused with the CCG type PP, which has a di�erent meaning.
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Freq. Type Location Relation Example
63591 PP/NP Any Argument Verb: Je� Rowe contributed(S\NP)/PP to this articleNP

Adjective: the Richmond warehouse north(NP\NP)/PP of San
FranciscoNP

Noun: PartNP/PP of the problemNP

21628 ((S\NP)\(S\NP))/NP Verb Adjunct totaled $ 58 millionS\NP after the property sale lossNP .
14256 (N \N )/NP Noun Adjunct the profitsN from U.S. explorationNP

6048 (S/S )/NP Sentence Adjunct For instanceNP , franchisers no longer must ...S
4033 ((S\NP)/(S\NP))/NP Verb Adjunct WCRS group, for its partNP , will be able to ...S\NP

3266 (NP\NP)/NP Noun Adjunct a brief rescueNP , with political undertonesNP

2378 PP/(S\NP) Any Argument high temparatures used(S\NP)/PP in canning vegeta-
blesS [ng]\NP .
Big companies are growing weary(S [adj ]\NP)/PP of �ghting
environmental movements.S [ng]\NP

2292 (S\S )\NP Sentence Adjunct It was the caseS two yearsNP ago

2168 (S\S )/NP Sentence Adjunct ... increased by 62.3%,S for the 12-month periodNP

933 PP/PP Any Argument wriggling(S\NP)/PP out of horrible positionsPP
282 (N \N )/N Noun Adjunct an expected premium of 75 %N to 85 %N

185 (NP\NP)\NP Noun Adjunct ..., compared with 82.2% the previous week and 86.2%NP a
yearNP ago

56 (PP\NP)/NP Noun Both spewing sulfurous material 190 milesNP into its atmosphereNP

43 (NP/NP)/NP Noun Adjunct some subgroups � for exampleNP , married women with chil-
dren at homeNP � would be larger.

Table 4.1: Most common preposition (and postposition) types in CCGbank
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Verb arguments are represented di�erently in CCGbank. When a verb ex-

pects an argument introduced by a preposition, it is witnessed by its type:

instead of consuming an object of type NP , it will expect a special type PP .

S

S\NP

PP

NP

N

article

NP/N

this

PP/NP

to

(S\NP)/PP

contributed

NP

Je�

Note that this convention still allows for optional arguments because verbs

can be typed di�erently depending on the context. To parse the sentence Je�

contributed very often, it is enough to give contributed the type S\NP . This
is a di�culty for taggers as it increases the number of types verbs can have

and choosing one sometimes requires a global knowledge of the sentence due

to long range dependencies. On the other hand, this is valuable because it

enables us to model the probability of verb subcategorization frames in the

tagger itself. The rebanked CCGbank also encodes particles in verb types

with a special PR type, as in �leave((S\NP)/NP)/PR one outPR�, so verbs can

occur with mostly any combination of NP , PP , and PR types as arguments,

such as ((S\NP)/NP)/PP or (((S\NP)/PP)/NP)/PR.

The PP type is mostly used to introduce argument prepositional phrases,

but sometimes its argument attachment is only spurious, for instance in the

case of multi-word prepositions:

Solvents are in prospect because((S\NP)/(S\NP))/PP of the Montreal ProtocolNP

In this case, of is indeed the argument of because, but the full prepositional

phrase is actually an adjunct of the verb phrase. Hence, most of the types
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marked as arguments in Table 4.1 can actually be involved in adjunct at-

tachments, although this is quite rare.

The most frequent type for prepositions introducing an adjunct to a noun is

(N \N )/NP , used in the case where the preposition introduces a noun phrase.

In the original CCGbank, the type (NP\NP)/NP was used instead, both

for argument and adjunct attachments. This was due to the uninformative

treatment of noun phrases in the Penn Treebank. The rebanked version

introduces the argument-adjunct di�erence for noun phrases, also using the

type PP to represent argument prepositional phrases.

NP

N

PP

NP

N

start-up

NP/N

a

PP/NP

in

N /PP

interest

NP/N

anN

N \N

NP

N

U.S.

NP/N

the

(N \N )/NP

in

N

units

Figure 4.2: Adjunct and argument attachment to noun phrases

The framework also allows us to distinguish the prepositional phrases mod-

ifying verb phrases and those modifying whole sentences. This distinction

is somewhat spurious, because these constructions are mostly equivalent in

terms of meaning.2 Concretely, it occurs when the prepositional phrase ap-

pears before the sentence, or is separated from the verb phrase with a comma.

Sentence attachments correspond to the types (S/S )/NP , (S\S )/NP for

prepositions and (S/S )\NP , (S\S )\NP for postpositions.

2From the perspective of pragmatics, this is not quite true as there can be a di�erence
of emphasis or focus.
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S\NP

PP

PP\NP

NP

N

atmosphere

NP/N

its

(PP\NP)/NP

into

NP

NP

miles

NP/N

190

(S\NP)/PP

NP

material

((S\NP)/PP)/NP

spewing

Figure 4.3: An example with both noun and verb attachments for the same
preposition

Note that the distinction between these di�erent attachment locations and

types can become more complicated in some cases, for instance with prepo-

sitions bearing the type (PP\NP)/NP . This type is used to combine two

noun phrases to create a prepositional argument, for instance for a verb. It

is hence used for prepositions introducing an adjunct for a noun phrase, and

where the compound is in turn an argument for a verb. The derivation tree in

such a case in shown in Figure 4.3. This shows again that the PP-attachment

problem is quite arti�cial when considered as a binary classi�cation problem.

4.3.2 Semantics

Modelling sentences with prepositions in the distributional compositional

framework of Section 2.3 requires us to de�ne appropriate meanings for each

(preposition, type) pair. In their most general form, these meanings are

tensors whose dimensions are determined by the type. Luckily, the number

of cases to consider is much lower than in Table 4.1, because the translation

of the type to vector spaces forgets the direction of the quotients for instance.

Moreover, we assume that we use the same vector space for the semantics

of N and NP , written N , following common practice. The distributional

compositional framework does not determine entirely the semantics, as we
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still need to devise a method to estimate these tensors from data.

Adjunct attachments

We begin with the semantics for prepositions attaching as adjuncts, and

focus �rst on noun adjunct attachments. As we can see in Table 4.1, the

large majority of them use the types (N \N )/NP or (NP\NP)/NP . The

semantic representation for these types is an object in a third-order tensor

space N∗ ⊗ N ⊗ N∗, or equivalently a map from N ⊗ N to N , using the

equivalence explained in Figure 2.15.

N N∗ N N∗ N

politicians on bikes

In the traditional framework using the tensor product, this means that the

representation for the noun phrase politicians on bikes is −→on(
−−−−−−−→
politicians ⊗

−−−→
bikes). The Kronecker operation ⊗ takes the two noun vectors of size n and

returns a vector of size n2, a �attened version of the outer product of the two

vectors. The matrix −→on, of size (n, n2), is then applied to this vector.

Adjuncts for verb phrases are somewhat more complicated. As shown in

Table 4.1, these prepositions use the type ((S\NP)\(S\NP))/NP or a variant

of it. Once translated to the semantics, this type is the product of �ve

semantic spaces, S∗ ⊗ N ⊗ N∗ ⊗ S ⊗ N∗. This is rather long: suppose

for instance the semantic spaces S and N both have 100 dimensions, which

is a reasonable experimental setup. The dimension of the space for such

prepositions would then have dimension dim S2 × dimN3 = 1010. This is

of course a lot more than what we can a�ord on a computer, and having

such a large number of parameters for a single preposition makes any form
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S∗ N N∗ S N∗

(a) General form, of order 5

S∗ N N∗ S N∗

(b) Reduced form, of order 3

Figure 4.4: General and reduced form of semantics for verb adjunct preposi-
tions

of training intractable. This is a good example of why the de�nition of

the semantics of Section 2.3.2 is not a practical recipe for the meaning of a

sentence, but rather an elegant abstract de�nition of compositionality.

To solve this dimensionality issue, one can leverage the fact that adjuncts

for sentences and adjuncts for verb phrases carry the same meaning. In the

following examples, the preposition on gets di�erent types for each sentence,

but the meaning remains the same:

The board enforces the regulations on my behalf. ((S\NP)\(S\NP))/NP

The board enforces the regulations, on my behalf. (S\S )/NP

On my behalf, the board enforces the regulations. (S/S )/NP

The board, on my behalf, enforces the regulations. ((S\NP)/(S\NP))/NP

This suggests that the general form for the VP adjunct preposition is unnec-

essarily general. The semantic representation of on : ((S\NP)\(S\NP))/NP

should essentially be the same as on: (S\S )/NP . In other words, the noun

phrase introduced by the preposition only modi�es the result of the verb

phrase once it has been applied to a subject, and does not need any direct

interaction with the subject itself. But concretely, it is not straightforward

to understand how to constrain the high dimensional representation of the

larger type to match the smaller one. Again, diagrams come to the rescue:

we simply need to draw a link between the two N types we want to cancel

out, as shown in Figure 4.4.

By making the in�uence of the noun phrase on the right independent from the
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Cows swim on Thursdays.

N N∗ S S∗ N N∗ S N∗ N

On Thursdays, cows swim.

S S∗ N∗ N N N∗ S

Figure 4.5: Reduced form of preposition ensures semantic equality of spurious
syntactic di�erences

subject of the verb phrase, we reduce the order of the tensor from 5 to 3. The

semantics is now fully determined by a tensor of dimension dim S2 × dimN,

which is still large but manageable in practice. In fact, these estimations are

based on the assumption that we use the traditional tensor-based model, but

the simpli�cation we have just described applies to any categorical model of

meaning, in particular the ones we have sketched in Section 3.2. Moreover,

we use the same tensor for all four types shown above, and this implies that

the meanings of the corresponding sentences are identical.

Argument attachments

The semantics of argument prepositions is very di�erent. Let us analyze �rst

the case of the most common type, PP/NP . According to the framework,
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Jane gives �owers to Ohad.

N N∗ S N∗ N∗ N N N∗ N

Jane gives Ohad �owers.

N N∗ S N∗ N∗ N N

Figure 4.6: Representation of argument prepositions as identities

there should be a function
−→
to : N → PP used to de�ne in the meaning of the

following sentences:

Outbreaks were traced toPP/NP staphylococcus aureus.

Net income rose toPP/NP $213 million.

The administration banned mushrooms in response toPP/NP the outbreak.

However, the meaning of to here is tightly linked to the meaning of the verb

or the noun it attaches to. Hence, learning one generic function
−→
to : N → PP

does not make sense. Prepositions introducing arguments have no meaning

in themselves but only indicate which one of the possible arguments they

announce, allowing for omissions and reorderings. For instance, the verb

to give can have the type ((S\NP)/NP)/NP (Jane gives Ohad a book) or

((S\NP)/PP)/NP (Jane gives a book to Ohad). Therefore, we propose to

use the semantic space N for PP types as well. This allows us to use the

identity for the semantics of prepositions with type PP/NP .

Although it works well for PP/NP , the use of N for PP types is not entirely
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satisfactory. For instance, some prepositions introduce verb phrases, with

type PP/(S\NP), so such a choice would require a generic mechanism to

transform a verb phrase into a noun. Even worse, the analysis of multi-word

prepositions involves a PP regardless of the attachment of the prepositional

phrase. For instance, the preposition instead of can be used to combine two

verb phrases and should hence have the type ((S\NP)\(S\NP))/(S\NP).

But as each word should have a type, the following analysis is used:

remain independent instead((S\NP)\(S\NP))/PP ofPP/(S\NP) pursuing a buy-out

Using N for PP here would create a bottleneck between instead and of which

is not desirable in the semantics.

4.4 The PP attachment problem in pictures

We now have all the ingredients to study the PP attachment problem in the

categorical framework, using the grammar of English de�ned by CCGbank.

friendseat

pizzaPaul

withV

cheesepizza

withNPaul

eat

Figure 4.7: Composition structure for verb and noun adjunct attachments
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Chapter 5

Experiments

In Natural Language Processing, semantics are bound to be imperfect ap-

proximations of what is really meant and understood in our sentences. To

evaluate the quality of these representations, we use them to solve a task

where we believe that some understanding of the words themselves is needed.

This is the reason why, despite all the criticism of the PP-attachment prob-

lem, it makes sense for us to work on this task. The goal is not to improve

the state of the art of CCG parsing, but rather to evaluate distributional

semantics and the composition method on a particular problem. Trying to

directly improve a parser could be possible, but would make evaluation more

complicated as various components in�uence the �nal parser accuracy.

In the �rst section, we explain why the Ratnaparkhi dataset (Ratnaparkhi

et al., 1994) is too limited for our purpose, and how we were able to extract

a more informative dataset from the rebanked CCGbank. We present a

simple but e�ective baseline on this dataset, inspired by the standard baseline

on the Ratnaparkhi dataset. Then, we describe our experimental setup to

estimate distributional vectors and tensors. Finally, we evaluate our results

and analyse the tensors learnt.
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5.1 Extracting an enhanced dataset

The Ratnaparkhi dataset (Ratnaparkhi et al., 1994) is the standard resource

to evaluate systems solving the PP attachment problem. Each sample is a

tuple (verb, noun_1, prep, noun_2, loc), where noun_1 is the head of

the verb object, noun_2 is the head of the prepositional phrase introduced

by prep, and loc indicates where the preposition attaches to: either the

verb (V) or the noun (N). These tuples were automatically extracted from the

Penn Treebank.

join board as director V

is chairman of N.V. N

named director of conglomerate N

caused percentage of deaths N

using crocidolite in filters V

bring attention to problem V

is asbestos in products N

led team of researchers N

making paper for filters N

including three with cancer N

Figure 5.1: The �rst 10 samples of the training set of Ratnaparkhi et al.
(1994)

The standard task on this dataset is to predict the last �eld, the attach-

ment location. As we have seen in Section 4.3.1, the ambiguity that CCG

supertaggers have to deal with is much more diverse. The type of a given

preposition usually encodes much more than the attachment location, and

adds in particular the attachment type. In addition, some types � such as

the most frequent one, PP/NP � do not even specify an attachment location

but only that the prepositional phrase is an argument.

Moreover, we have explained in Section 4.1.1 that the cognitive biases for

the PP attachment problem make more use of the argument/adjunct dis-

tinction than the noun/verb. This implies that the distinction is probably

also interesting to study in a classi�cation problem.
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For these two reasons, we have extracted a new version of the Ratnaparkhi

corpus, with argument (R) or adjoint (D) labels.

join board as director V D

is chairman of group N R

is chairman of N.V. N R

named director of conglomerate N R

led team of researchers N D

making paper for filters N D

have diseases including three V D

is finding among those V D

be highest for workers N D

regulate class including crocidolite N D

Figure 5.2: The ten �rst samples of our extended dataset

This dataset was extracted from the rebanked CCGbank (Honnibal et al.,

2010), by �ltering the predicate-argument dependences for each sentence. We

have manually selected a set of possible types for each possible role in the

tuple. Each combination of matching types with the corresponding predicate-

argument links is extracted as a training sample, and the labels are deduced

from the types, as explained in Section 4.3.1.

Although both datasets have been extracted from the same sentences, there

are some di�erences between the two corpora. It would have been di�cult

to extract the same samples as in the original dataset, because the exact

extraction procedure they have used is not explained in Ratnaparkhi et al.

(1994). Moreover, many postprocessing steps have taken place betweeen the

original Penn Treebank and the rebanked CCGbank, so even if we had access

to the original heuristics, it would probably have been very hard to mimic it

on our corpus.

Generally, prepositions cannot be detected simply by looking at their type:

for instance, the word said gets the type (S\S )/NP in the following sentence:

We have no information on whether users are at risk said J. A. Talcott

However, looking at the part of speech is not enough either, as some prepo-
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of in to for on from with at as by into
NR 88.0 22.5 16.0 35.7 35.6 21.7 20.4 11.4 8.6 29.6 8.9
ND 9.3 22.0 3.3 15.2 9.2 5.5 16.7 10.9 28.5 2.4 0.2
VR 2.3 7.9 75.0 28.0 27.9 64.5 36.7 28.5 41.3 27.0 80.8
VD 0.3 47.4 5.4 20.9 27.1 8.2 26.0 49.1 21.5 40.8 9.8

a about between over including against after than during
NR 0.0 66.5 68.8 24.7 1.9 41.3 0.6 0.7 0.0
ND 100.0 10.0 6.2 15.5 74.2 12.5 11.4 88.4 12.6
VR 0.0 20.5 4.8 13.7 0.4 28.3 1.3 0.0 0.0
VD 0.0 2.8 20.0 45.8 23.3 17.7 86.4 10.7 87.3

Table 5.1: Attachment statistics for the 20 most frequent prepositions
Key: N: noun, V: verb, R: argument, D: adjunct.

sitions such as notwithstanding or including are tagged VBG (gerund). We

have hence used a closed list of 110 single word prepositions obtained from

Wikipedia.

5.2 Baseline

The addition of the argument/adjoint information turns the original binary

classi�cation problem into a 4-class version, for which we have not found any

previous work. We propose here a simple but already very e�ective baseline,

against which our distributional semantics will be evaluated.

A simple approach to the attachment location prediction problem is pro-

posed by Hindle and Rooth (1993). They compare the a�nity between the

preposition and either the verb or the object, and attach accordingly. The

a�nity between the verb v and the preposition p is de�ned as the ratio of

training samples where p was attached to v, denoted by fV (v, p), over the

number of training samples involving v as a verb, c(v). The noun a�nity is

de�ned similarly. To account for the sparsity of such counts, they smooth

the frequencies using the overall proportion of verb attachments for a given
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preposition, a(p).

scoreV (v, p) =
fV (v, p) + a(p)

c(v) + 1
scoreN(n, p) =

fN(n, p) + (1− a(p))

c(n) + 1

The attachments are then predicted by choosing the greatest score. This

simple method is very e�ective and achieves 80.2% accuracy on our test set.

This accuracy is pulled upwards by prepositions that are strongly biased to-

wards one attachment site or the other, such as of or to. Following Emerson

and Copestake (2015), we also use a restricted set of more balanced prepo-

sitions1, where it reaches 73.9% accuracy. A more interesting restriction is

to evaluate the baseline on argument and adjunct attachments (as indicated

by the gold standard of the test set). This approach gives 87.9% accuracy

on argument attachments and 68.4% on adjuncts. The di�erence is not sur-

prising as the lexical association between prepositions and the lexical head

they attach to is stronger in the case of arguments, whereas the restriction a

phrase imposes on its adjuncts is more semantic, and hence harder to capture

with an approach considering words as atomic units.

This simple baseline can be extended to our new classi�cation problem, where

the relation between the head and the prepositional phrase has also to be

predicted. For x ∈ {R,D} (argument or adjunct), we de�ne

scoreV,x(v, p) =
fV,x(v, p) + ax(p)

c(v) + 1

and similarly for scoreN,x(n, p). The counts fV,x(v, p) denote the number of

times the verb v has been attached with p under the relation x. The classi�er

chooses the best score among the four {(V,R), (V,D), (N,R), (N,D)}. Such
a classi�er achieves 71.1% accuracy on the test set. Table 5.2 shows its

confusion matrix and con�rms that in this case as well, adjuncts are harder

to predict than arguments.

1These prepositions are: on, at, by, for, from, in, as, to, with
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ND NR VD VR
ND 157 165 109 61
NR 15 620 59 83
VD 100 253 518 152
VR 29 152 57 815

Table 5.2: Confusion matrix of the lexical baseline on the full classi�cation
problem. Rows: gold standard, columns: prediction.

5.3 Distributional approach

We propose another approach based on the distributional compositional

framework. As the lexical baseline presented in the last section is already very

e�ective for arguments, we propose to improve the prediction of adjuncts.

Argument attachments are made based on essentially lexical associations, as

they arise with the combination of a lemma and a preposition (report-on,

interest-in). Adjunct attachments are more topical and involve a form of

semantic compatibility between the complement and the head. These are

the cases where semantic interactions drive the decision process, and where

distributional semantics could help.

Given a sample, we compute two sentence representations, �rst assuming that

the prepositional phrase applies to the noun, then to the verb, in both cases

as adjuncts. This gives us two sentence vectors, that we can use as features

of an SVM to predict the attachment. This is similar to Zhao and Lin (2005)

where distributional representations are used as features to a classi�er. The

di�erence is that in our case, these representations are combined together

beforehand, reducing the dimension of the feature space.

The composition methods we use are directly taken from Figure 5.4. As the

subject of the verb is not present in our samples, we actually compute the

representation for verb phrase only. Therefore, we choose to estimate verb

representations that ignore their subject, i.e. functions v : N → S instead of

functions v : N ⊗ N → S for transitive verbs. Let us denote by n1, n2 ∈ N
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the two noun vectors, pn : N⊗N → N the tensor for the noun preposition p,

and pS : S ⊗ N → S. This composition process boils down to the following

recipes:

sv := pv(v(n1)⊗ n2)

(a) Composition for verb attach-

ments

sn := v ◦ pn(n1 ⊗ n2)

(b) Composition for noun attach-

ments

friendseat

pizza

withV

cheesepizza

withN

eat

Figure 5.4: Composition structure for verb and noun adjunct attachments

5.4 Experimental setting

To turn these representations into actual procedures to predict attachments,

we need to learn the parameters of the model from a corpus. Unfortunately,

there is no o�-the-shelf method to learn categorical models of meaning. In

this section, we develop one, along the lines of the previous work on this

topic, reviewed in Section 2.3.2. First, we estimate word vectors using stan-

dard distributional techniques, then we compute the tensors based on these

words. Vectors and tensors are estimated using a copy of Wikipedia (Octo-

ber 2013). We used the tokeniser from the Stanford NLP tools, the Morpha

lemmatiser (Minnen et al., 2000) and the C&C parser (Curran et al., 2007).
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5.4.1 Word vectors

Many parameters in�uence the estimation of word vectors (Kiela and Clark,

2014), and the kind of semantic information they carry crucially depends

on them. By its nature, the PP attachment problem is rather syntactic.

Smaller contexts have been reported to represent better this form of infor-

mation (Zhao and Lin, 2005). To make these contexts even more syntactic,

we use the 100 most common prepositions and the 100 most common content

words as context words. We use two di�erent basis vectors for each preposi-

tion: one for the contexts where the target word appears before the context

preposition, and one when it appears after. Target words are the union of

the 10000 most frequent content words (adjectives, nouns, verbs, adverbs)

and the words appearing in our PP attachment corpus. Cooccurrence counts

are weighted with Positive Pointwise Mutual Information (PPMI):

PPMI(i, j) = max(PMI(i, j), 0) PMI(i, j) = log
fi,j
fifj

where fi,j is the occrrence frequency of the context-target bigram, and fi, fj
are their individual frequencies. The vectors are then reduced to a 100-

dimensional space using Singular Value Decomposition as explained in Sec-

tion 2.2.2. Words vectors are normalized to have unit L2 norm before and

after SVD.

5.4.2 Verb matrices

As motivated in Section 5.3, our model of verbs ignores their subjects. There-

fore, a verb is represented by a linear map v : N → S, transforming the

representation of its object to that of the sentence.

We estimate these matrices for the 10000 most common verbs in the corpus,

by looking for instances where they are the source of a dobj dependency

relation with a target word. Suppose that for a given verb v, there are N
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such instances ni in the corpus. The verb matrix is computed by:

V =
1

N

N∑
i=1

1

2
(ni + v)⊗ ni

This estimation method is motivated by the similar summation techniques

of Grefenstette et al. (2014) presented in Section 2.3.2. This suggests to

use sum ni ⊗ ni, but we modify the output towards the verb's vector by

changing it to 1
2
(ni + v) because the verb being the head of the verb phrase,

its representation should have a signi�cant in�uence on the representation of

the verb phrase.

5.4.3 Prepositions attaching to noun phrases

Noun phrases are estimated similarly. We look for triples (n1, p, n2) where

n1, n2 are target words, p is a preposition, and two dependency relations

hold: dobj p n2 and ncmod n1 p.

The tensor for the preposition is also obtained by summing outer products

of vectors. Let N be again the number of training samples in the dataset.

PN =
1

N

N∑
i=1

n1
i ⊗ n1

i ⊗ n2
i

Note that the output of the tensor (the �rst term) is again the lexical head

of the noun phrase.

5.4.4 Prepositions attaching to verb phrases

For verb phrases, we look for more complex dependency patterns, as four

words are involved.
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They reward their employees with insane bonuses

dobj dobj

ncmod

v n1 p n2

We estimate again the preposition as the sum of the outer products of its

arguments and desired output:

PV =
1

N

N∑
i=1

ui ⊗ ui ⊗ n2
i where ui =

vi(n
1
i )

‖vi(n1
i )‖

The ui vector is the vector associated with the inital verb phrase (vi, n
1
i ), and

is computed using the verb matrix vi as estimated previously, and the word

vector n1
i .

5.4.5 Classi�cation method

This distributional model only covers adjunct attachments. To turn it into

a full classi�cation system, we pair it with the lexical scores produced by

the baseline. Our goal is to mimic the argument preference explained in

Section 4.1.1 using the following algorithm, parameterized by a threshold t:

1. Compute the lexical scores for noun and verb attachment

2. If the best lexical score exceeds t times the other lexical score, use

the baseline to predict the attachment.

3. Otherwise, predict the attachment by using a Support Vector Ma-

chine classi�er with the two sentence vectors as features.

Given a threshold t, the SVM is trained on the samples it would have had to

classify on the training set, that is to say only the samples where the lexical

scores are close.
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5.5 Results

We split our new version of the Ratnaparkhi dataset into a training set,

development set and test set, keeping the same proportions as the original

dataset. The word vectors and tensors are learnt independently using the

Wikipedia corpus. The SVM parameters and the threshold are optimized

using a 5-fold cross-validated grid search on the training set. Setting the

threshold to 1 gives the lexical baseline, setting it to a very large value gives

a system that relies solely on the distributional vectors.

System Arguments Adjuncts Both
Baseline (t = 1) 87.9 68.8 80.2
SVM, t = 1.9 88.4 68.9 81.1

SVM, t = 6.0 84.9 71.8 80.0

Table 5.3: Accuracy rates on the test set

We present our system with two di�erent values for the threshold t. These

have been tuned on the training set, �rst to optimize the overall accuracy

(t = 1.9) and second for the adjunct attachment accuracy (t = 6.0). In the

�rst case, our classi�er achieves a better overall accuracy than the baseline.

In the second, we observe a more signi�cant increase on adjunct classi�cation,

which is what we expect as the distributional vectors have been trained for

that purpose.
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Chapter 6

Conclusion

Although the two parts of this project are very di�erent in nature, they

are two complementary ways to consider one general question: is the distri-

butional compositional model suited to represent the meaning of arbitrary

sentences, at a large scale and with wide coverage?

6.1 Alternate type-driven models of meaning

In the �rst part of this dissertation, we have shown that type-driven, compo-

sitional and categorical do not necessarily imply tensor-based, which opens

up the framework to more economical and e�cient representations. Some of

them had already been considered as simpli�cations of the original model of

meaning. Some others can be seen as adaptations of the popular neural mod-

els to type-driven syntax. We do not consider any of them as the panacea of

distributional compositional models, but as they share many of the theoreti-

cal properties presented in the seminal work of Coecke et al. (2011), this is an

incentive to reconsider why the community focuses on tensor-based models.
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6.2 Distributional semantics of prepositions

Applying the distributional compositional model to arbitrary sentences is

not only a technical challenge: we also have to ensure that this form of

representation is suited for a wide range of syntactic roles. Although the

distributional hypothesis is convincing for content words such as adjectives,

verbs or nouns, its extension to closed class words with a more logical be-

haviour is still a challenge. Our contribution is to show that, to some extent,

the model is also suited to represent prepositions, as the semantics it pro-

vides can be used to improve the performance of a strong baseline on the PP

attachment problem, especially for adjunct attachments where purely lexical

approaches perform poorly.

6.3 Future work

The development of symbolic rewriting tools to simplify the composition

structure of sentences is a crucial prerequisite to our �rst proposal. Hence,

a natural extension would be to continue their development and integration

with existing tools.

However, it does not seem to match the current directions in the community.

A very di�erent line of research has recently been taken by Piedeleu et al.

(2015), who propose to enrich the semantics by doubling the order of the

tensors, using the Completely Positive Maps (CPM) construction. Inspired

by analogies with quantum mechanics, this construction allows us to repre-

sent an additional level of superposition in the word tensors, that could be

used for various purposes. Let us emphasize that such a construction e�ec-

tively squares the dimensions of the vector spaces used. In the short term at

least, this drives the distributional compositional model to a more theoretic

agenda.

In the meantime, large coverage distributional models of meaning (Mikolov

et al., 2013) tend to ignore syntax, considering it an inaccurate linguistic
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vision rather than a useful guide for semantic compositions. This makes

these models simpler, hence easier to design, train and tune, but does not

necessarily imply that syntax has no role to play in the composition process.

Overall, it seems that the theoretical and practical approaches to distribu-

tional semantics drift away from each other. We hope to have convinced

the reader that the categorical model can still provide a conceptual bridge

between them.
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