Published April 26, 2018 | Version v1
Journal article Open

Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent

  • 1. Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
  • 2. Department of Radiology and Oncotherapy, Semmelweis University, Budapest 1094, Hungary
  • 3. CROmed Translational Research Centers, Budapest 1047, Hungary
  • 4. Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary and Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
  • 5. Mediso Medical Imaging Systems Ltd., Budapest 1022, Hungary
  • 6. CROmed Translational Research Centers, Budapest 1047, Hungary and
  • 7. Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary and CROmed Translational Research Centers, Budapest 1047, Hungary

Description

Abstract

Background: The aim of this study was to develop and characterize a nanoparticle-based image-contrast platform which is biocompatible, chemically stable, and accessible for radiolabeling with 201Tl. We explored whether this nanoparticle enhanced the T1 signal which might make it an MRI contrast agent as well.

Methods: The physical properties of citrate-coated Prussian blue nanoparticles (PBNPs) (iron(II);iron(III);octadecacyanide) doped with 201Tl isotope were characterized with atomic force microscopy, dynamic light scattering, and zeta potential measurement. PBNP biodistribution was determined by using SPECT and MRI following intravenous administration into C57BL6 mice. Activity concentrations (MBq/cm3) were calculated from the SPECT scans for each dedicated volume of interest (VOI) of liver, kidneys, salivary glands, heart, lungs, and brain.

Results: PBNP accumulation peaked at 2 hours after injection predominantly in the kidneys and the liver followed by a gradual decrease in activity in later time points.

Conclusion: We synthetized, characterized, and radiolabeled a Prussian blue-based nanoparticle platform for contrast material applications. Its in vivo radiochemical stability and biodistribution open up the way for further diagnostic applications.

Files

Szigeti_ContrastMediaMolImag_2018-P20.pdf

Files (2.1 MB)

Name Size Download all
md5:734df5587a31c43bd74840ac105db19b
2.1 MB Preview Download

Additional details

Funding

INMIND – Imaging of Neuroinflammation in Neurodegenerative Diseases 278850
European Commission