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ABSTRACT: Currently, a central demand of coastal and marine food web researchers is the search
for holistic and functional ecosystem health indicators. Based on concepts directly derived from
R. L. Lindeman's work (Lindeman 1942; Ecology 23:399-418), 6 estuarine food web models were
analysed to assess the potential impact of multiple disturbances on the trophic state of food webs.
The models described a Zostera noltii meadow and a bare sediment site in the Mondego estuary,
Portugal, during 3 distinct time periods corresponding to (1) nutrient enrichment, (2) the imple-
mentation of mitigation measures, and (3) after a centenary flood. We tested 4 candidate metrics,
directly derived from the trophic-dynamic concepts proposed by Lindeman (1942): food chain
length, the detritivory/herbivory ratio, trophic efficiency per trophic level and mean trophic effi-
ciency. Based on this case study, none of the metrics are yet ready to be used per se as operational
metrics to quantify and interpret the impact of disturbances on the ecosystem's trophic state.
Trophic efficiency appeared to be sensitive to external pressures. However, the mean trophic effi-
ciency of the system might not be sufficient to draw conclusions about the trophic efficiency of the
ecosystem: trophic efficiency should be observed at the trophic level in order to better understand
cascading effects within food webs.
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INTRODUCTION

R. L. Lindeman's (1942) scientific paper entitled
‘The Trophic-Dynamic Aspect of Ecology’ provided a
framework for future research on energy flow and
nutrient budgets in ecosystems and set the foun-
dations for the development of systems ecology.
Lindeman established a theoretical model for nutri-
ent cycling expressed explicitly in terms of energy
flow described by mathematical equations and
developed the concept of the trophic pyramid. His
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adviser, G. E. Hutchinson, acknowledged Linde-
man's seminal work in an addendum to Lindeman
(1942), writing that ‘the final statement of the struc-
ture of a biocoenosis consists of a pair of numbers,
one an integer determining the level, one a fraction
determining the efficiency, [which] may even give
some hint of an undiscovered type of mathematical
treatment of biological communities’ (p. 418). Later,
in 1979, Hutchinson added the statement: ‘Linde-
man's (1942) paper was the first one to indicate how
biological communities could be expressed as net-
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works or channels through which energy is flowing
and being dissipated, just as would be the case with
electricity flowing through a network of conductors'
(Hutchinson 1979, p. 246).

In the same period, Cook (1977) pointed out that
Lindeman's contribution stressed the major role of
trophic functions, particularly quantitative relations,
in the determination of community patterns through
succession, and established the validity of a theoretical
orientation in ecology by creating a theoretical model
for trophic interactions, quantitatively represented by
mathematical relations. This allowed Lindeman to de-
velop a number of predictions with which the validity
of the model could be assessed. Finally, the trophic-
dynamic approach identified a fundamental dynamic
process —energy flow—with which the seasonal
trophic relations of organisms could be integrated into
the long-term process of community change.

Lindeman's work was also criticised. For instance,
Cousins (1985) found Lindeman's description of eco-
systems to be an oversimplified description of eco-
systems since relationships are rarely linear, and
because species often consume at different trophic
levels. In response to Cousins' remarks, Ulanowicz
(1995) defended the Lindeman scheme as a quantita-
tive description of behaviour at the community level.
According to Ulanowicz (1995), it was only necessary
to abandon the notion of discrete trophic levels and
then most ambiguities concerning trophic status
would vanish. That is, a given taxon does not need to
be wholly assigned to a single trophic level, and vice
versa. This idea built upon the proposition of Odum &
Heald (1975) that species could be positioned at some
non-integer trophic levels (i.e. the weighted average
of the number of links in the various pathways along
which it consumes). Ulanowicz proposed the use of
what he called the 'Lindeman spine’, a linear chain
that sums up the information of a complex trophic
network by dividing the compartments and their
activity into discrete levels, the first level being com-
posed of both primary producers and detritus. This
tool maps the complicated networks of the eco-
system's flows into a common topological form that
allows distinct ecosystems to be compared.

Complementary to these studies are the concepts
developed by Odum (1969, 1985) concerning food
web analysis in the context of the development of
ecosystems, and in particular in situations of stress,
defined as ‘unusual external perturbations’ (Odum
1985). Today, the key question in ecology remains:
How does an ecosystem react to disturbance? Cur-
rently, one of the major challenges is to find indica-
tors that can adequately assess the ecological condi-

tion of a natural system, considering it as a functional
unit (Rombouts et al. 2013). Interestingly, a candidate
metric is ‘efficiency’, first defined by Lindeman
(1942) for each trophic level. Working on Lake Men-
dota, he produced the first measures of this index
described as the percentage of the production of one
trophic level converted to production by the next
trophic level. Since then, this index has been and is
still widely used to assess the trophic state of an eco-
system, and is either known as ‘trophic efficiency’ or
‘transfer efficiency’' (e.g. Pauly & Christensen 1995,
Jennings et al. 2002, Libralato et al. 2008, Coll et al.
2009, Fiscus 2009, Pranovi & Link 2009, Baird et al.
2012, Heymans et al. 2012). Reflecting on different
scenarios of fishing pressure, Gascuel (2005) pro-
posed that trophic efficiency should be considered as
a key characteristic of the functioning of ecosystems,
associated with its sensitivity to fishing pressure.
Pranovi & Link (2009) also showed different trophic
efficiency values among fishery-exploited systems,
arguing the need for between-site comparisons to
make the generalisation that is necessary for success-
ful ecosystem-based management. An emerging
specialised literature proposed the use of trophic effi-
ciency as a descriptor of ecosystem health, especially
in lakes (Xu & Mage 2001, Hecky 2006) and in eco-
system-based fishery management (Rochet & Tren-
kel 2003, Libralato et al. 2008, Coll et al. 2009).
Another candidate metric, which was also directly
inspired by Lindeman (1942) when he referred to the
role of saprophageous organisms and heterotrophic
bacteria, and which was formalised by Ulanowicz
(1992), is the detritivory/herbivory (D/H) ratio (or
herbivory/detritivory ratio). This ratio has already
been tested as a candidate for defining functional
indicators of the food web, but the observed trend
varied according to the situation described. For
example, Ulanowicz (1992) observed a lower D/H
ratio in disturbed situations, whereas Dame & Chris-
tian (2007) observed exactly the opposite trend.
Based on Lindeman's original concepts, the scien-
tific community developed and evaluated new indi-
cators to depict the trophic status of ecosystems and
to link them to system stability and resilience (e.g.
Ulanowicz & Puccia 1990, Christensen & Pauly 1993,
Libralato et al. 2006, 2008, Heymans et al. 2007).
With the ultimate goal of providing functional indica-
tors for ecosystem-based management, and follow-
ing European directives (e.g. Good Ecological Status,
Water Framework Directive), specific indicators were
proposed. For instance, regarding fishery pressure,
different indices were commonly adopted and used
in the literature, such as the primary production
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required to sustain fisheries (Christensen & Pauly
1993), or the L index, which provides a basis for esti-
mating the maximum number of ‘acceptable’ catches
(Libralato et al. 2008). From a more functional per-
spective, the ‘keystoneness’ index was developed by
Libralato et al. (2006) in order to assess the structur-
ing role of species (or functional groups) in food
webs, and the Mixed Trophic Impact index to
address the effect that an increase in the biomass of
one impacting group would have on the biomass of
another (Ulanowicz & Puccia 1990).

Because they attract a large human population,
and because of their position at the intersection of the
marine and terrestrial realms, estuaries are dynamic
systems subjected to multiple and diverse pressures.
These include pollution, excess nutrient loading,
habitat destruction and biodiversity changes (Hal-
pern et al. 2008). Estuaries are also naturally stressed
systems, and Elliott & Quintino (2007) emphasised
how difficult it is to differentiate natural from human
stressors. They are the object of numerous studies on
the functioning of ecosystems, and authors often aim
to describe how these ecosystems evolve in this
multiple-pressure context. Some of these studies
have been based on methodologies derived from
trophodynamic concepts and have used inter-system
comparisons of either different periods or sites
(Christian et al. 2005, 2009, Patricio et al. 2006,
Leguerrier et al. 2007, Heymans et al. 2012, Niquil et
al. 2012, Chrystal & Scharler 2014). In

the D/H ratio and Lindeman's spine length. Due to
the large amount of information on the structure and
functioning of the intertidal food webs in the Mon-
dego estuary (Portugal) (Patricio & Marques 2006,
Patricio et al. 2004, 2009, Baeta et al. 2009a,b, 2011),
this system was chosen as a case study.

MATERIALS AND METHODS
Study site

The Mondego estuary is a relatively small (860 ha),
warm-temperate, polyhaline intertidal system loca-
ted on the western Atlantic coast of Portugal. It con-
sists of 2 arms: North arm and South arm (Fig. 1). The
southern arm is characterised by intertidal mudflats
(almost 75 % of the area), which are exposed at low
tide. The tidal range varies between 0.35 and 3.3 m
depending on the site and the tide coefficient, while
the water residence time varies between 1 or 2 d
(northern arm) and 3 d (southern arm).

From 1991 to 1997, the communication between
the 2 arms of the estuary became totally interrupted
in the upstream area, which caused the river dis-
charge to flow essentially through the northern arm.
Consequently, water circulation in the southern arm
became mainly dependent on tides and on the small
freshwater input from a tributary, the Pranto River,

these studies, the set of indices com-
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Fig. 1. Locations of the sampling sites in the Mondego estuary: Zostera mead-
ows and bare sediment sites (grey circles). Left panel shows the change in
area covered by Zostera noltii in the southern arm of Mondego estuary be-
tween 1986 and 2004. Mapping of benthic vegetation is based on field obser-
vations, aerial photographs and Geographical Information System analysis

(ArcView GIS v.8.2)
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artificially controlled by a sluice (Marques et al.
2009). This led to clear eutrophication symptoms in
the southern arm (e.g. green macroalgal blooms)
(Leston et al. 2008, Patricio et al. 2009). In 1997, to
decrease these eutrophication symptoms and to test
ways of improving the system's conditions, the fresh-
water discharge from the Pranto River sluice into the
southern arm was reduced to a minimum in order to
decrease nutrient inputs, and was diverted to the
northern arm by another sluice located further
upstream. Moreover, the communication between
the northern and southern arms was re-established
to a very limited extent (periods of only 1.5 to 2 h
before and after each high-tide peak through a sec-
tion of only 1 m?) to improve water circulation (Mar-
ques et al. 2009).

A long-term study of the Mondego estuary ecosys-
tem carried out since the mid-1980s made it possible
to determine the system's responses to these modifi-
cations to its physical conditions, such as changes in
the Zostera noltii beds and in the green macroalgae
Ulva spp. coverage and biomass (e.g. Patricio et al.
2009). Following the interruption of the upstream
communication between the 2 arms, ecological condi-
tions in the southern arm rapidly deteriorated. The
combined effect of increased water residence time
and higher nutrient concentrations was the main driv-
ing force behind the seasonal Ulva spp. blooms and
the consequent severe reduction in the area occupied
by Z. noltii beds due to competition with the macro-
algae (Patricio et al. 2009). The shift in benthic primary
producers changed the benthic macrofauna trophic
structure (e.g. Marques et al. 1997, 2003, Patricio &
Marques 2006). According to Patricio et al. (2009),
after experimental mitigation measures were applied
in 1998, this trend appeared to reverse to a certain
extent, as the area occupied by Z. noltii was partially
regained, the green Ulva spp. blooms decreased mar-
kedly and the macrofauna assemblages gave signs of
recovering their former condition of the late 1980s.

The winter of 2000/2001 was characterised by
unprecedented high precipitation values compared
to the average long-term precipitation (2000/2001:
1802 mm; 1940 to 1997: 1031 mm), which caused one
of the largest flood events of the century in the
Mondego catchment area.

Construction of mass-balanced models
Six mass-balanced models were constructed using

Ecopath software (Christensen & Pauly 1992). The
input information came from an extensive field-

sampling program, was expanded with stable isotope
analysis (SIA) and completed with published refer-
ences. Fieldwork was conducted in 2 areas located in
the southern arm of the Mondego estuary (Z. noltii
meadows and bare sediment area), during 3 periods:
1993/1994, 1999/2000 and 2001/2002. Detailed de-
scriptions of the study sites, sampling program and
protocols, network construction, dietary matrices and
SIA can be found in Baeta et al. (2011). The quantita-
tive contribution of the food sources of consumers
was estimated using mixing models as well as the
quantitative information on sources of nutrition of the
estuarine invertebrates inhabiting the 2 study areas.
Although information from the literature was used in
this study (equations based on local data on individ-
ual size for metabolic parameters of all and diets of a
few compartments), the majority of the inputs came
from data directly collected from the sites during the
periods represented by the models (i.e. community
structure, biomass of all and diets of several compart-
ments, P/B ratios). The food webs were built using
data for benthic macrofauna species, representing
the benthic food web, and no compartments regard-
ing higher trophic levels—fish and birds—were
included in the models, as no information precisely
covered the periods of interest (for further details see
Patricio et al. 2004).

Trophic analysis

For the 6 food webs built, the trophic analysis was
derived from the '‘Network Analysis' routine included
in the Ecopath with Ecosim software (v.6.3.8648.0).

The 'mean trophic level' was calculated for each
consumer compartment as the length of the different
consumption pathways, averaged with a weight cor-
responding to the quantity of carbon that passes
along each pathway (Odum & Heald 1975, Ulano-
wicz 1995). Level I corresponds to the primary pro-
ducers and the non-living, detrital compartments.
The strict herbivores or detritivores consequently
occupy a position of II (one plus one). Other con-
sumers are then allocated to several discrete trophic
positions, according to the amounts that reach them
along feeding pathways of various lengths, and the
mean trophic position is calculated as the mean path-
way, with a weight corresponding to the flow value
in g AFDW m™2 yr !, This indicator was analysed
together with the total consumption (sum of all flows
from the different preys) of the consumer.

The same distribution of compartments within inte-
ger trophic levels was used to build the ‘Lindeman
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the
(internal ascendency/internal development capacity,

Ai/Ci) was calculated (Monaco & Ulanowicz 1997).

The D/H ratio (i.e. the values of the detritivory flow,
from detritus to level II, divided by the value of the

herbivory flow, from primary producers to level II)

was calculated for each of the 6 food webs.
In order to compare these indicators directly derived

from Lindeman (1942) with an indicator based on in-
The mean trophic level for each consumer com-

partment is presented for the 3 food webs of the
Zostera bed and for the bare sediment food webs

(Fig. 2) over time. The compartments are ranked in
decreasing order of mean trophic levels (left axis).
The species whose consumption exceeds the maxi-
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Once the compartment is decomposed within integer
and the contributions of each trophic level to respira-
tion, imports and exports are also evaluated (Baird &
Ulanowicz 1989). The building of this linear chain
enables the efficiency of the transfer from one aggre-
gated trophic level to the next to be calculated. This
index is calculated as the fraction of the total carbon
input to a given level that is transmitted to the next,
higher level (Baird & Ulanowicz 1989). The ‘mean
trophic efficiency' of the system is then derived from
the geometric mean of the efficiencies of trophic
levels II to IV (Baird & Ulanowicz 1989,
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is calculated from level II up, so the mean trophic
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mum value of the graph (50 g AFDW m~2 yr~!) are the
following: (1) Hydrobia ulvae (478 g AFDW m2 yr!
in 1993/1994, 319 in 1999/2000, 453 in 2001/2002),
Scrobicularia plana (84 g AFDW m™2 yr! in 1999/
2000, 79 in 2001/2002) and Hediste diversicolor (70 g
AFDW m™ yr! in 2001/2002) at the Zostera sites
(Fig. 2); and (2) H. ulvae (161 g AFDW m™2 yr! in
1993/1994), S. plana (67 g AFDW m™2 yr~' in 1993/
1994, 157 in 1999/2000, 123 in 2001/2002) and
Cyathura carinata (128 g AFDW m™2 yr! in 1993/
1994, 72 in 1999/2000, 102 in 2001/2002) (Fig. 2) at
the bare sediment sites.

These high consumption values are measured for
taxa with a trophic level around 2. For instance, the
gastropod H. ulvae is a grazer that feeds mainly on
benthic diatoms. The same was observed for the sus-
pension feeder S. plana, which also consumes phyto-
plankton and detritus. The trophic level value for
these highly active compartments (i.e. with a high
consumption) remains low, with maximal values
observed for H. diversicolor (max. 2.05) and C. cari-
nata (max. 2.17). Both are omnivores, feeding on a
wide variety of different animals, algae and detritus,
but their diet remains dominated by detritus. The
main animal prey for H. diversicolor is H. ulvae
(Zostera bed in 2001/2002), and for C. carinata it is H.
diversicolor (bare sediment in 2001/2002).

Among less active compartments (i.e. those with the
lowest value of total consumption), those belonging to
a trophic level above II correspond to the omnivorous
and carnivorous annelids Eteone flava, Glicera tri-
dactyla, Nephtys spp., Mista picta, Lumbrinereis, Dio-
patra neapolitana and Nemertini, and to the decapods
Carcinus maenas and Crangon crangon (Fig. 2). The
food sources of these species include animals, algae
and detritus (see dietary matrices in Baeta et al. 2011,
supplementary material). The compartment that most
often is the highest predator at the mean trophic level
is C. maenas. Its diet, in Zostera beds as well as in
bare sediment models, is composed of 10 to 15% de-
tritus (including bacteria) and 4 % primary producers;
the remaining 81 to 86 % being a great variety of het-
erotrophic prey items. Its main prey consists of H. di-
versicolor, C. crangon and S. plana. Correlated with
the highest diversity in the Zostera bed models, C.
maenas is positioned at a higher trophic level (2.98 to
3.05) than in bare sediment models (2.87 to 2.95). In
one of the bare sediment food webs (1993/1994), 2
taxa are positioned at a higher level than C. maenas:
Nemertini and G. tridactyla. Their mean trophic lev-
els, however, remain lower than III (2.91 and 2.90, re-
spectively). In one case of the Zostera bed model
(1999/2000), 2 species are positioned at a higher level

than C. maenas: E. flava and M. picta, both positioned
at a mean trophic level of 3.04.

The carbon flow networks of the 6 models were
transformed into Lindeman spines (sensu Ulanowicz
1995). The models for the 3 periods of the Zostera bed
are illustrated in Fig. 3, and those of the bare sedi-
ment area in Fig. 4.

In order to make a distinction between detritivory
and herbivory, the detritus pool (D) was separated
from the primary producers (P). Together, both pools
form level I. This allowed the D/H ratio to be calcu-
lated, considering a functional emergent property of
food web organisation (Table 1). Detritivory was
always superior to herbivory, ranging from 1.03 to
2.25. In each food web, the D/H value of the Z. noltii
meadows food web was higher than that of the bare
sediment area, showing that detrital pathways are
important for Zostera bed functioning. Although the
food webs temporally showed differences in the D/H
ratio, it is worth noting that in both areas, there was
an increase in the D/H value after the century flood.

The D/H ratio was always higher in the Zostera
meadows, mainly due to the high biomass of H. ulvae
found in this area. H. ulvae feeds not only on micro-
phytobenthos (MPB), but also on detritus (in high
proportion). In Zostera bed Site Z01, the D/H ratio
was slightly higher than in Site 793, due to the
increase in S. plana biomass in 1999 and 2001; how-
ever, in 1999, the D/H ratio was lower because the
biomass of H. ulvae was much lower.

In the bare sediment, the D/H ratio was lower in
1993 and higher in 2001. In 1993, the consumption of
detritus by H. ulvae was significantly lower, since the
availability of MPB was significantly higher. The D/H
ratio was close to 1, since the consumption of produc-
ers by H. ulvae was very similar to that of C. carinata
on detritus (in fact, consumption by H. ulvae + S.
plana of producers = consumption by C. carinata + H.
ulvae of detritus). In 2001, the biomass of H. ulvae
was very low, and consequently its consumption was
also very low. C. carinata remained the species with
the highest consumption of detritus.

Examining the detritus pool inputs, it was also pos-
sible to differentiate between locally produced detri-
tus and inputs originating outside. Compared to all
detritus flows (inputs from outside + locally produced
detritus), 59 to 66 % of the detritus was produced
locally. The values for the Zostera bed food webs (59
to 66 %) were similar to those for the bare sediment
models (60 to 63 %). In both systems, this percentage
increased from 1993 to 1999 (after the implementa-
tion of the mitigation measures), followed by a de-
crease after the flood event (from 1999 to 2001).
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Table 1. Characteristics of the 6 original Ecopath models
(Baeta et al. 2011). No. comp = number of compartments;
TEm = mean trophic efficiency; D/H = Detritivory/Her-
bivory; Z = Zostera bed site; bs = bare sediment site; 93 =
1993/1994; 99 = 1999/2000; 01 = 2001/2002

Site No. comp TEm (%) D/H ratio
Z93 36 5.7 1.96
Z99 31 6.5 1.41
Z01 24 6.3 2.25
bs93 25 4.6 1.03
bs99 20 2.9 1.11
bs01 20 3.1 1.65

The Lindeman spines also illustrate the flows of
respiration, detritus production and export, leaving
each integer trophic level. In the present case, only
respiration and detritus production were taken into
account; export was estimated as null in the model
(Baeta et al. 2011). Because most of the heterotrophic
biomass was located at level II (97 to 99 %), respira-
tion flows followed the biomass distribution closely,
with higher values at level II.

The Zostera meadows food webs have longer
chains than the bare sediment food webs. This obser-
vation results from the higher number of compart-
ments in the Zostera bed food webs, which in turn
reflects the higher species richness of this area com-
pared with the bare sediment area. The highest
trophic efficiency value was always found at level III
(Fig. 5), ranging between 6 % (bare sediment in 2001)
and 13% (Zostera bed in 1999).

In terms of mean trophic efficiency (Fig. 6), the
values presented by Zostera bed models were higher
(5.7 to 6.5%) than those of bare sediment area mod-
els (2.9 to 4.6%). The mitigation measures in 1999
corresponded to an increase in mean trophic effi-
ciency in the Zostera site compared with the eutroph-
ication period (5.7 to 6.5%), followed by a minute
decrease after the flood event. In the food webs of the
bare sediment area, the mean trophic efficiency val-
ues were higher in the eutrophic period (4.6 %) than
in the other 2 periods (2.9 to 3.1 %). Our observations
suggest that the implementation of mitigation meas-
ures had a stronger impact on the mean trophic effi-
ciencies than the extreme flood event. Compared to
Ai/Ci, which describes the specialisation of the flows,
we observed that the trend of variation over time was
comparable with the mean trophic efficiency for the
bare sediment site, but both were in contradiction to
the Zostera site. In both sites, Ai/Ci was lower in
1999/2000 and returned to a higher value in
2001/2002.
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Fig. 5. Trophic efficiencies per trophic level, for the 6 models
(bs = bare sediment; Z = Zostera bed; 93 = 1993/1994; 99 =
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III = predation on level III by level IV / consumption of level
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Fig. 6. Mean trophic efficiency, TEm (geometric mean of val-

ues for integer levels calculated for trophic levels II to IV)

and relative internal ascendency, Ai/Cji, for the 6 models (bs

= bare sediment, Z = Zostera bed, 93 = 1993/1994, 99 =
1999/2000, 01 = 2001/2002)

DISCUSSION

The Mondego estuary monitoring programme
began in the mid-1980s. This ecological monitoring
programme was developed because it is well known
that many ecological processes occur through, or are
driven by, factors acting on long temporal and large
spatial scales. Many scientists have collected valu-
able information about the estuary over the last 30 yr,
including data on physical conditions, primary pro-
ducers, zooplankton, benthic macrofauna, fish and
birds (e.g. Marques et al. 2003, 2013, Patricio et al.
2004, 2009, Lopes et al. 2005, Dolbeth et al. 2007,
Martinho et al. 2007, Cardoso et al. 2010, Falcao et al.
2012, Verissimo et al. 2012, Neto et al. 2013). The
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analysis of these data was the basis for a better
understanding of the structure and functioning of
this estuarine ecosystem.

In the early and mid-1990s, nutrient enrichment in
the system led to macroalgal blooms that decreased
the previously dominant macrophyte communities
(i.e. Zostera noltii). In 1998, mitigation measures
were implemented in order to restore the Z. noltii
beds and the overall quality of the system. A few spe-
cies responded positively (e.g. higher biomass of
Scrobicularia plana and Hediste diversicolor), others
negatively (e.g. lower biomass of Hydrobia ulvae),
which led to more structured and stable populations,
closer to the less disturbed conditions observed in the
1980s (Patricio et al. 2009). According to Baeta et al.
(2011), the Z. noltii site showed a higher number of
trophic compartments and a higher level of system
activity (i.e. sum of consumptions, respiration, flows
to detritus, production, total system throughput, net
primary production and system omnivory index) than
the bare sediment site. The differences in total sys-
tem throughput between the 2 sites, for the 3 periods,
were mainly due to differences in the biomass of pri-
mary producers (higher primary production at the
Zostera site). In both habitats, after recovery meas-
ures were implemented there was an increase in S.
plana and H. diversicolor biomass, consumption, res-
piration and flows to detritus, and a decrease in H.
ulvae biomass and associated flows, which increased
again after the centenary flood (Baeta et al. 2011).
This study showed that the estuarine food webs were
affected differently by each disturbance event, and
suggested that a high system throughput seems to be
associated with higher stress levels, contradicting the
idea that higher system activity is a sign of healthier
conditions.

Lindeman's (1942) trophic-dynamic concepts and
Ulanowicz's (1995) developments bring about an-
other way to analyse the 6 case studies presented in
Baeta et al. (2011).

Advantages and limitations of the chosen
numerical approach

This study was based on high quality models as
revealed by the large amount of local information
used. Because the 6 models shared comparable
structures (differences among considered trophic
compartments were directly linked with differences
in biodiversity), the comparison could be based on
indicators from network analysis shown to be sensi-
tive to the structure of the food web model (Johnson

et al. 2009). However, to maintain the high reliability
in the estimated flows, we made the choice not to
consider birds and fish. Even if these compartments
had been described previously (e.g. Lopes et al. 2005,
Martinho et al. 2007), the information was not suffi-
cient to exactly determine their role during each
studied period and at each study site. This has to be
taken into account in our comparison. In particular, it
reduces the possibility of adding other metrics to our
comparison, or comparing index values with those
derived from models of other estuarine ecosystems
that usually consider a wider area and include birds
and fish (Christian et al. 2005, Leguerrier et al. 2007,
Heymans et al. 2012).

Lindeman spine topology

The length of the Lindeman spines varied between
habitats (i.e. inter-habitat changes) and among years
within habitats (i.e. inter-annual differences). The
Zostera bed chains were longer than those of the
bare sediment site. At first, it may seem possible to
generalise that the trophic chain length is propor-
tional to the number of compartments present in the
food web, i.e. that more compartments will resultin a
longer chain. However, this trend is only verified in
some case studies. For example, the food web of the
Zostera bed site in 2001 has 24 compartments, but its
chain is 1 step longer (number of trophic levels: 8)
than that of the bare sediment site in 1993 with 25
compartments (number of trophic levels: 7). Other
variables besides number of compartments probably
contribute to determining the length of the energy
chains. Ulanowicz (1992), based on data taken from a
tidal marsh tributary creek of the Crystal River
(Florida, USA) and from a similar creek that was sub-
ject to an average 6°C rise in ambient temperature
because of exposure to the effluent from an adjacent
power-generating station, proposed that the length
of the Lindeman spine is related to the level of stress,
i.e. that shorter chains would reflect a higher degree
of stress. According to Ulanowicz's (1992) proposal,
the bare sediment food webs, with shorter chains,
would reflect a higher level of stress in this habitat
than in the Zostera bed site. If fact, Z. noltii has
adapted to the challenging conditions affecting inter-
tidal habitats, including environmental heterogene-
ity and disturbance (Hemminga & Duarte 2000). This
macrophyte can act as a buffer to disruption, essen-
tially as a function of shelter offered by foliage, and
because this species’ root networks stabilise the sed-
iment in which they grow.
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Over time, no clear trend in chain length variation
was noticeable within each habitat. In the Zostera
bed area, the 3 food webs had the same chain length,
regardless of period and disturbance type. In the
bare sediment area, the chain length decreased dur-
ing and after implementation of the mitigation meas-
ures, which somehow contradicts Ulanowicz (1992).
Further investigation is needed to clearly understand
the connection between chain length and level of
disturbance.

Detritivory/herbivory ratio

In general, the food webs of the Zostera meadows
tended to have higher D/H ratio values than the bare
sediment site food webs (except for Site bs01). Within
each period, the same result was noticed. Our find-
ings are not unexpected, since macrophyte habitats
are characterised by high availability of detritus,
either resulting from the direct decay of plants or
because their roots constitute traps for detrital par-
ticles. In both cases, huge amounts of detritus (and
bacteria) are accessible for consumption by benthic
organisms.

According to Ulanowicz (1992), systems with high-
er levels of stress usually show lower D/H values.
Based on this observation, we could conclude that
the Zostera meadows area is at a lower stress level
than the bare sediment area. However, the results
were less clear when we analysed the differences
among periods within each habitat. In both areas,
there was an increase in the D/H value after the cen-
tury flood, mainly driven by changes in the abun-
dance and biomass of H. ulvae (feeding on microphy-
tobenthos and detritus), S. plana, Cyathura carinata
and H. diversicolor. In this case, after the extreme
flood event in 2001 (a high-level disturbance), detri-
tivory increased, largely exceeding herbivory, in
whichever habitat was considered. Our findings are
in line with those of Dame & Christian (2007), who
studied 4 salt-marsh ponds during periods of low
stress, high stress and post-disturbance, respectively,
and observed an increase in detritivory during the
high stress conditions. These findings are in contrast
to Ulanowicz's (1992) proposition. Therefore, further
tests are necessary before being able to use the D/H
ratio as an operational metric to quantify and inter-
pret the impact of disturbances on the trophic state
and functioning of an ecosystem.

Moreover, as D/H is mainly related to the diet of
species with high consumption (in this case study,
species with consumption values above 50 g AFDW

m~2yr!), changes in community composition, species
biomass and diet composition are particularly rele-
vant. The diet matrices used to build the 6 food webs
of the Mondego estuary were built (for several
species) using isotopic ratios assessed from local
samples, and analysed with a stable isotope mixing
model (ISOSOURCE software; Phillips & Gregg
2003). This analysis confirmed that the dominant
species have dietary plasticity over both time and
space. For instance, the diet of H. ulvae shifted from
a main consumption of microphytobenthos in the
bare sediment food web in 1993 (75 % microphyto-
benthos, 25% detritus) to a diet dominated by detri-
tus in the Zostera bed area (68, 55 and 68 % in 1993,
1999 and 2001, respectively). These findings empha-
sise the importance of building food webs using
information about local diets, and it is interesting, for
the robustness of the numerical approach, to use mix-
ing model results for constraining food-web models
(Baeta et al. 2011, Pacella et al. 2013).

Trophic efficiency

This broad term, which designates a measure that
can be estimated from Lindeman spines, has different
uses in the scientific literature. Thus, the lack of a
unique and clear definition might raise serious diffi-
culties when comparing trophic efficiencies among
different studies. Caution is therefore essential. The
mean trophic efficiency of an ecosystem is generally
considered to be the geometric average of the trophic
efficiencies of all trophic levels (Baird & Ulanowicz
1989). For instance, trophic level I considers only pri-
mary producers (Miehls et al. 2009), or becomes level
I+D when concatenating primary producers and de-
tritus (e.g. Baird et al. 2012). The primary production
included in the Ecopath routine is considered as net
primary production (the gross primary production mi-
nus the respiration of the primary producer consid-
ered). Thus, the total value is considered to be avail-
able for herbivory, and the value of the respiration by
primary producers is not estimated. For this reason, it
is not possible to calculate the trophic efficiency at
level I when using Ecopath without having informa-
tion about gross primary production or respiration at
level I, and the mean trophic efficiency has been con-
sidered for all levels from II to the top (Coll et al.
2009), or from II to IV (Heymans et al. 2012). Unfortu-
nately, this prevents any comparison between the
trophic efficiency values of our 6 models and the
trophic efficiency values of models that considered
trophic level I or I+D (Baird et al. 2004, 2007, Duan et
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al. 2009, Miehls et al. 2009). This is disappointing
since this first level seems to be highly sensitive to
pressures such as eutrophication (Christian et al.
2009) or invasion by non-indigenous species (Baird et
al. 2012). For the future, it would be important to in-
clude in Ecopath the possibility of estimating the res-
piration of primary producers. This would allow the
trophic efficiency at level I+D to be estimated, and
would ensure a better comparability of trophic effi-
ciencies at the system level.

In general, the 'trophic efficiencies per trophic level’
(see Fig. 6) at the Zostera bed site were higher than
those of the bare sediment area. For both habitats and
for the 3 periods, the trophic efficiency at level II was
low and its value varied within a minor interval (1.3 to
3.3%). Interestingly, the highest trophic efficiency
values were found at level III. The trophic efficiency
per trophic level found for the 6 food webs of the Mon-
dego estuary was different from the results found for
the Sylt-Reme Bight ecosystem in the northern Wad-
den Sea (Baird et al. 2004, 2007, 2012) and for the
Neuse River estuary in North Carolina, USA (Christian
et al. 2009). These 2 ecosystems were characterised
by maximum values at level I (primary producers +
detritus) and a monotonous decrease in trophic effi-
ciency values with increasing trophic levels. Further-
more, Duan et al. (2009) studied the Pearl River est-
uary, China, a coastal ecosystem that has been
overfished and has received a high level of combined
pollution since the 1980s. The authors built 2 food
webs, one for 1981 and one for 1998, when the estuary
was heavily exploited. In 1981, the highest trophic
efficiency value was found at level III (11.8 %), like in
the Mondego estuary (i.e. with a similar pattern), but
that was not the case for the model of the year 1998,
where the lowest trophic efficiency was found at level
IIT (5.6 %) and the other trophic levels showed values
above 11 %. This drop in the trophic efficiency of level
IIT was linked to the strong increase in jellyfish bio-
mass that was poorly consumed. These studies show,
therefore, that the pattern of variation in trophic effi-
ciency per trophic level varies between ecosystems
and disturbance levels.

It is also worth noting that each habitat reacted dif-
ferently to the type of disturbance acting upon the
system. In the Zostera area, the mean trophic effi-
ciency was higher after the implementation of the
mitigation measures, while in the bare sediment area
the trophic efficiency decreased. This might be
related to the changes in primary production that
occurred in the area. In fact, in 1993, the bare sedi-
ment area had an unusual input of energy as a conse-
quence of the macroalgal blooms; since the mitiga-

tion measures, such an input has not been observed.
No major changes in mean trophic efficiency were
seen after the centenary flood. Analysing the scien-
tific literature on the topic, stress is usually associated
with low system efficiency. For example, between
1974 and 1989, the Venetian Lagoon experienced a
high level of eutrophication (Libralato et al. 2004).
During this period, the mean trophic efficiency of the
lagoon was extremely low (i.e. 0.5%; Libralato et al.
2004). Christian et al. (2009) described a decrease in
the mean trophic efficiency of the Neuse River estu-
ary after a severe episode of hypoxia. Baird et al.
(2012) reported a decrease in mean trophic efficiency
in the Sylt-Reme Bight ecosystem. However, this con-
nection between higher stress levels and a decrease
in mean trophic efficiency cannot be generalised.
There are cases where stress lowers the values of the
trophic efficiencies of some trophic levels, but this is
compensated by an increase in the trophic efficiency
of another level, resulting in an overall value that is
higher in disturbed situations (see for instance Duan
et al. 2009, Chrystal & Scharler 2014). In ecosystems
affected by fisheries, similar trends were observed by
Coll et al. (2009), who made the following hypothesis:
‘the food web became more efficient with time, and
may be due to less biomass and production in the
ecosystem' (p. 2098). The literature also pointed out
an increase in the mean trophic efficiency in accor-
dance with the meta-analysis (based on 53 models)
provided by Heymans et al. (2012). According to
Heymans et al. (2012), mean trophic efficiency in-
creases with fishing pressure (no fishing, low and
high fishing pressure scenarios distinguished), and
more precisely, the relationship between mean
trophic efficiency and the L index seems very close to
linearity (Libralato et al. 2008). Heymans et al. (2012)
also noticed that mean trophic efficiency depends on
the size, longitude, type and depth of the ecosystem.
However, all these authors agree with Rochet &
Trenkel (2003), who present trophic efficiency as a
good indicator for informing on ecosystem function
changes and quantifying potential structural chan-
ges. Our findings, analysing other disturbances (i.e.
eutrophication, hydrodynamic alterations and an ex-
treme climatic event—a centenary flood), suggest
that the mean trophic efficiency of the system might
not be sufficient to draw conclusions about the tro-
phic efficiency of the ecosystem. Rather, it is essential
to take into account 2 levels of integration: the overall
efficiency and the efficiency of each trophic level. In
order to obtain functional indicators of ecosystem
conditions, it is worth comparing the properties of
many of the coastal and marine food webs already
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published. However, extra care should be taken to
cope with differences in the type of ecosystem/
habitat, acting pressures, levels of integration (e.g.
mean trophic efficiency and efficiencies per trophic
level), and also the lack of standardised methodolo-
gies between studies (e.g. number of compartments
considered and aggregation level). It is essential to
be aware that the lack of straightforward compara-
bility might be a severe constraint to extracting pat-
terns and proposing generalisations.

Finally, comparison of the mean trophic efficiency
with the Ai/Ci shows that the relationship between
the specialisation of internal flows and trophic effi-
ciency (Monaco & Ulanowicz 1997) is not direct. Al-
though the trend of variation was the same over time
for the bare sediment site, the opposite trend was
observed for the Zostera site. According to theories
linking ascendency to maturity (Ulanowicz 1997,
Ulanowicz et al. 2009), the most stressful situations
for the 2 habitats would be during the mitigation
period. This may be associated with the recent chan-
ges in nutrient loading, followed by a short period of
adaptation for the ecosystem.

CONCLUSIONS

Our results indicated that none of the tested meas-
ures (i.e. Lindeman spine length, D/H ratio, mean
trophic efficiency and trophic efficiency per trophic
level) are yet ready to be used per se as operational
metrics to quantify and interpret the impact of distur-
bances on the trophic state of an ecosystem. It seems
neither easy nor linear to establish a clear link
between structural characteristics, such as biodiver-
sity, and trophic attributes of ecosystems. However,
although the comparability of the models was note-
worthy, the fact that only benthos was taken into
account precludes comparison with whole ecosystem
models. Such research needs to be pursued and
would require the development and application of a
conceptual framework (with common and useful sets
of indicators, i.e. a multi-indices approach), integrat-
ing a holistic approach based on as many observa-
tions as possible (Cury et al. 2005, Shin et al. 2010, Fu
et al. 2012). According to Christian et al. (2009), a
framework combining ecological network analysis
and functional aspects would result in an improved
approach to ecosystem-based management, even if
there is no clear consensus on its implementation
(Peterson et al. 2000, Dame & Christian 2006). How-
ever, despite the vast literature on new trophic attrib-
utes derived from ecological network analysis (e.g.

Coll et al. 2009, Pranovi & Link 2009, Heymans et al.
2012), this issue needs further investigations and pro-
cesses, as recent works (such as Fu et al. 2012) have
pointed out the need for improvements to be carried
out; for instance, taking into account the sites’ speci-
ficity and associated local anthropogenic pressures.
In this framework, indicators derived from network
analysis are promising for defining ecosystem health
indicators. They allow the whole ecosystem structure
to be considered and to function in a context of
maturation and stress (Christensen 1995, Ulanowicz
1997, Bondavalli et al. 2006). They can also be re-
lated to resilience (Christensen 1995, Heymans et al.
2007, Lobry et al. 2008) and they allow the detection
of non-linear major changes (i.e. abrupt shifts) at the
ecosystem level (Savenkoff et al. 2007, Tomczak et
al. 2013).
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