Software Open Access

yannforget/builtup-classification-osm v1.3

Yann Forget


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Yann Forget</dc:creator>
  <dc:date>2018-06-18</dc:date>
  <dc:description>This repository contains the replication code for the following paper:


	Yann Forget, Catherine Linard and Marius Gilbert. "Supervised Classification of Built-Up Areas in Sub-Saharan African Cities using Landsat Imagery and OpenStreetMap", 2018.


Input and output datasets are available in another Zenodo repository. Please refer to the Github repository for further informations.</dc:description>
  <dc:description>This research was funded by the Belgian Science Policy Office
  and is part of the research project SR/00/304 MAUPP (Modelling and forecasting
  African Urban Population Patterns for vulnerability and health assessments).</dc:description>
  <dc:identifier>https://zenodo.org/record/1292005</dc:identifier>
  <dc:identifier>10.5281/zenodo.1292005</dc:identifier>
  <dc:identifier>oai:zenodo.org:1292005</dc:identifier>
  <dc:relation>url:https://github.com/yannforget/builtup-classification-osm/tree/v1.3</dc:relation>
  <dc:relation>doi:10.5281/zenodo.1291960</dc:relation>
  <dc:relation>doi:10.5281/zenodo.1292004</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://opensource.org/licenses/MIT</dc:rights>
  <dc:subject>remote sensing</dc:subject>
  <dc:subject>landsat</dc:subject>
  <dc:subject>openstreetmap</dc:subject>
  <dc:subject>supervised learning</dc:subject>
  <dc:title>yannforget/builtup-classification-osm v1.3</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>software</dc:type>
</oai_dc:dc>
116
20
views
downloads
All versions This version
Views 116116
Downloads 2020
Data volume 13.9 MB13.9 MB
Unique views 111111
Unique downloads 2020

Share

Cite as