Dataset Open Access

Dakar land use map at street block level

Tais Grippa; Stefanos Georganos


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.1291389", 
  "title": "Dakar land use map at street block level", 
  "issued": {
    "date-parts": [
      [
        2018, 
        6, 
        16
      ]
    ]
  }, 
  "abstract": "<p>This datatset contains a land use classification of Dakar (Senegal) at the street block level. It was created following the methodology presented in&nbsp;[1].</p>\n\n<p>Description of the files:</p>\n\n<ul>\n\t<li>&quot;Dakar_landuse_shapefile.zip&quot; : Shapefile of the street blocks extracted from OpenStreetMap using [2] with classification results in the attribute table.</li>\n\t<li>&quot;Dakar_landuse_style.zip&quot; : Files for style of the shapefile.</li>\n</ul>\n\n<p>Attribute table content:</p>\n\n<ul>\n\t<li>&quot;CAT&quot;, &quot;GID&quot; : ID of the street block</li>\n\t<li>&quot;PROB_ACS&quot; : Probability to belong to class ACS</li>\n\t<li>&quot;PROB_AGRI&quot; : Probability to belong to class AGRI</li>\n\t<li>&quot;PROB_BARE&quot; :&nbsp;Probability to belong to class&nbsp;BARE</li>\n\t<li>&quot;PROB_DEPR&quot; :&nbsp;Probability to belong to class DEPR</li>\n\t<li>&quot;PROB_PLAN&quot; :&nbsp;Probability to belong to class PLAN</li>\n\t<li>&quot;PROB_VEG&quot; :&nbsp;Probability to belong to class VEG</li>\n\t<li>&quot;FIRST_LABE&quot; : Class with the highest classification probability</li>\n\t<li>&quot;SEC_LABEL&quot; : Class with the second highest classification probability</li>\n\t<li>&quot;FIRST_PROB&quot; : Value of the highest classification probability</li>\n\t<li>&quot;SEC_PROB&quot; : Value of the second highest classification probability</li>\n\t<li>&quot;UNCERTAIN&quot; : Difference between&nbsp;&quot;FIRST_PROB&quot; and&nbsp;&quot;SEC_PROB&quot;</li>\n\t<li>&quot;BUILT_PERC&quot; : Percentage of the street blocks covered by built-up (from land cover map)</li>\n\t<li>&quot;MAP_LABEL&quot; : Final classification label with uncertainty and different density classes</li>\n</ul>\n\n<p>Legend classes label:</p>\n\n<ul>\n\t<li>&quot;AGRI&quot; : Agricultural vegetation</li>\n\t<li>&quot;VEG&quot; :&nbsp;Natural vegetation</li>\n\t<li>&quot;BARE&quot;&nbsp;:&nbsp;Bare soils</li>\n\t<li>&quot;ACS&quot; :&nbsp;Non-residential built-up (administrative, commercial, services, etc.)</li>\n\t<li>&quot;PLAN&quot; :&nbsp;Planned residential built-up</li>\n\t<li>&quot;PLAN_LD&quot; :&nbsp;Planned residential low density built-up</li>\n\t<li>&quot;DEPR&quot; : Deprived residential built-up</li>\n\t<li>&quot;UNCERT&quot; : Uncertain classification</li>\n</ul>\n\n<p>References:</p>\n\n<p>[1] Grippa, Tais, 2018, &quot;Mapping urban land use at street block level using OpenStreetMap, remote sensing data and spatial metrics&quot;,&nbsp;<em>ISPRS Int. J. Geo-Inf.</em>&nbsp;<strong>2018</strong>,&nbsp;<em>7</em>(7), 246.&nbsp;<a href=\"https://doi.org/10.3390/ijgi7070246\">https://doi.org/10.3390/ijgi7070246</a>&nbsp;</p>\n\n<p>[2]&nbsp;Grippa, Tais. 2018. &ldquo;Osm Street Blocks Extraction.&rdquo; Zenodo. <a href=\"https://doi.org/10.5281/zenodo.1290637\">https://doi.org/10.5281/zenodo.1290637</a>.</p>\n\n<p>Funding:&nbsp;</p>\n\n<p>This dataset was&nbsp;produced in the frame of two research project : MAUPP (<a href=\"http://maupp.ulb.ac.be\">http://maupp.ulb.ac.be</a>)&nbsp;and REACT (<a href=\"http://react.ulb.be\">http://react.ulb.be</a>), funded by the&nbsp;Belgian Federal Science Policy Office (<a href=\"http://eo.belspo.be/About/Stereo3.aspx\">BELSPO</a>).</p>", 
  "author": [
    {
      "family": "Tais Grippa"
    }, 
    {
      "family": "Stefanos Georganos"
    }
  ], 
  "note": "The production of this dataset was founded by BELSPO (Belgian Federal Science Policy Office) in the frame of the\nSTEREO III program, as part of the MAUPP (SR/00/304) and REACT (SR/00/337) project (http://maupp.ulb.ac.be\nand http://react.ulb.be/).", 
  "version": "V1.0", 
  "type": "dataset", 
  "id": "1291389"
}
133
36
views
downloads
All versions This version
Views 133133
Downloads 3636
Data volume 72.1 MB72.1 MB
Unique views 124124
Unique downloads 2222

Share

Cite as