Dataset Open Access

Dakar very-high resolution land cover map

Tais Grippa; Stefanos Georganos

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:contributor>Yann Forget</dc:contributor>
  <dc:contributor>Sabine Vanhuysse</dc:contributor>
  <dc:contributor>Éléonore Wolff</dc:contributor>
  <dc:contributor>Catherine Linard</dc:contributor>
  <dc:contributor>Marius Gilbert</dc:contributor>
  <dc:contributor>Michal Shimoni</dc:contributor>
  <dc:contributor>Andrew Tatem</dc:contributor>
  <dc:contributor>Nicole Van Lipzig</dc:contributor>
  <dc:contributor>Marco millones</dc:contributor>
  <dc:contributor>Benoit Parmentier</dc:contributor>
  <dc:contributor>Brian McGill</dc:contributor>
  <dc:contributor>Oscar Brousse</dc:contributor>
  <dc:contributor>Matthias Demuzere</dc:contributor>
  <dc:contributor>Daniel C Casey</dc:contributor>
  <dc:creator>Tais Grippa</dc:creator>
  <dc:creator>Stefanos Georganos</dc:creator>
  <dc:description>This land cover map of Dakar (Senegal) was created from a Pléiades very-high resolution imagery with a spatial resolution of 0.5 meter. The methodology followed a open-source semi-automated framework [1] that rely on GRASS GIS using a local unsupervised optimization approach for the segmentation part [2-3].

Description of the files:

	"" : The direct output from the supervised classification using the Random Forest classifier.
	"" : Post-processed version of the previous map ("Landcover"), with reduced misclassifications from the original classification (rule-based used to reclassify the errors, with a focus on built-up classes).
	"" : Smoothed version of the previous product (modal filter with window 3x3 applied on the "Landcover_Postclassif_Level8_Splitbuildings"). 
	"" : Corresponds to the "level8_Splitbuildings" with shadows coming from the original classification.
	"Dakar_legend_colors.txt" : Text file providing the correspondance between the value of the pixels and the legend labels and a proposition of color to be used.



[1] Grippa, Taïs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.” Remote Sensing 9 (4): 358.

[2] Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and Eléonore Wolff. 2017. “A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.” In Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II., edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE.

[3] Georganos, Stefanos, Taïs Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. “SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.” In Proceedings of the 2017 Conference on Big Data from Space (BiDS’17).



This dataset was produced in the frame of two research project : MAUPP ( and REACT (, funded by the Belgian Federal Science Policy Office (BELSPO).</dc:description>
  <dc:description>The production of this dataset was founded by BELSPO (Belgian Federal Science Policy Office) in the frame of the
STEREO III program, as part of the MAUPP (SR/00/304) and REACT (SR/00/337) project (
  <dc:subject>Land cover</dc:subject>
  <dc:subject>Very-high resolution</dc:subject>
  <dc:title>Dakar very-high resolution land cover map</dc:title>
All versions This version
Views 697697
Downloads 140140
Data volume 13.3 GB13.3 GB
Unique views 678678
Unique downloads 6363


Cite as