Dataset Open Access

IRMAS: a dataset for instrument recognition in musical audio signals

Juan J. Bosch; Ferdinand Fuhrmann; Perfecto Herrera


JSON-LD (schema.org) Export

{
  "description": "<p>This dataset includes musical audio excerpts with annotations of the predominant instrument(s) present. It was used for the evaluation in the following article:</p>\n\n<blockquote>\n<p>Bosch, J. J., Janer, J., Fuhrmann, F., &amp; Herrera, P. &ldquo;<a href=\"http://ismir2012.ismir.net/event/papers/559_ISMIR_2012.pdf\">A Comparison of Sound Segregation Techniques for Predominant Instrument Recognition in Musical Audio Signals</a>&rdquo;, in Proc. ISMIR (pp. 559-564), 2012</p>\n</blockquote>\n\n<p>Please Acknowledge IRMAS in Academic Research</p>\n\n<p>IRMAS is intended to be used for training and testing methods for the automatic recognition of predominant instruments in musical audio. The instruments considered are: cello, clarinet, flute, acoustic guitar, electric guitar, organ, piano, saxophone, trumpet, violin, and human singing voice. This dataset is derived from the one compiled by Ferdinand Fuhrmann in his&nbsp;<a href=\"http://www.dtic.upf.edu/~ffuhrmann/PhD/\">PhD thesis</a>, with the difference that we provide audio data in stereo format, the annotations in the testing dataset are limited to specific pitched instruments, and there is a different amount and lenght of excerpts.</p>\n\n<p><strong>Using this dataset</strong></p>\n\n<p>When IRMAS is used for academic research, we would highly appreciate if scientific publications of works partly based on the IRMAS dataset quote the above publication.</p>\n\n<p>We are interested in knowing if you find our datasets useful! If you use our dataset please email us at <a href=\"mailto:mtg-info@upf.edu\">mtg-info@upf.edu</a> and tell us about your research.</p>\n\n<p>&nbsp;</p>\n\n<p><a href=\"https://www.upf.edu/web/mtg/irmas\">https://www.upf.edu/web/mtg/irmas </a></p>", 
  "license": "https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain", 
      "@id": "https://orcid.org/0000-0003-4221-3517", 
      "@type": "Person", 
      "name": "Juan J. Bosch"
    }, 
    {
      "affiliation": "Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain", 
      "@type": "Person", 
      "name": "Ferdinand Fuhrmann"
    }, 
    {
      "affiliation": "Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain", 
      "@id": "https://orcid.org/0000-0003-2799-7675", 
      "@type": "Person", 
      "name": "Perfecto Herrera"
    }
  ], 
  "url": "https://zenodo.org/record/1290750", 
  "datePublished": "2014-09-08", 
  "version": "1.0", 
  "@type": "Dataset", 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/76ac96d0-1d06-479e-aedd-cf64760cb4cc/IRMAS-TestingData-Part1.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/76ac96d0-1d06-479e-aedd-cf64760cb4cc/IRMAS-TestingData-Part2.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/76ac96d0-1d06-479e-aedd-cf64760cb4cc/IRMAS-TestingData-Part3.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/76ac96d0-1d06-479e-aedd-cf64760cb4cc/IRMAS-TrainingData.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.1290750", 
  "@id": "https://doi.org/10.5281/zenodo.1290750", 
  "workFeatured": {
    "alternateName": "ISMIR 2012", 
    "location": "Porto, Portugal", 
    "@type": "Event", 
    "name": "13th International Society for Music Information Retrieval Conference"
  }, 
  "name": "IRMAS: a dataset for instrument recognition in musical audio signals"
}
10,057
24,771
views
downloads
All versions This version
Views 10,05710,052
Downloads 24,77124,770
Data volume 68.5 TB68.5 TB
Unique views 8,8528,847
Unique downloads 7,0927,091

Share

Cite as