Software Open Access

Software for: A micro/macro parallel-in-time (parareal) algorithm applied to a climate model with discontinuous non-monotone coefficients and oscillatory forcing

Samaey, Giovanni; Slawig, Thomas

We present the application of a micro/macro parareal algorithm for a 1-D energy balance climate model with discontinuous and non-monotone coefficients and forcing terms. The micro/macro parareal method uses a coarse propagator, based on a (macro- scopic) 0-D approximation of the underlying (microscopic) 1-D model. We compare the performance of the method using different versions of the macro model, as well as differ- ent numerical schemes for the micro propagator, namely an explicit Euler method with constant stepsize and an adaptive library routine. We study convergence of the method and the theoretical gain in computational time in a realization on parallel processors. We show that, in this example and for all settings, the micro/macro parareal method converges in fewer iterations than the number of used parareal subintervals, and that a theoretical gain in performance of up to 10 is possible.

This set includes all software to produce the results in the paper. Language: python.

Files (27.9 kB)
Name Size
27.9 kB Download
All versions This version
Views 9071
Downloads 1110
Data volume 332.8 kB279.5 kB
Unique views 8165
Unique downloads 1110


Cite as