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1. Introduction to Task

The purpose of Work Package 2 is to address and overcome central algorithmic core
problems in the realm of energy meteorology, with Task 3 envisaged to transform the solar
energy prediction to a prediction of optimal power generation of concentrated solar power.
The title of Task 2.3 is ”Optimal operation of Concentrated Solar Power (CSP) under
Weather Uncertainty.”

The goals of the task are to:

1. Further develop methodologies for optimal operation under uncertainty and for
the first time apply these to renewable energy [RWTH]

2. Demonstrate the effect of uncertainty on optimal operation, thus setting the goals
for accurately characterizing the uncertainty [RWTH]

3. Compare state-of-the-art weather prediction at the local scale with the ones de-
veloped, demonstrating the additional value. [CyI]

The research direction in this task has been lead by RWTH, with contributions from
the Cyprus Institute and from Forschungszentrum Jülich.

1.1 Activity Summary

The following list contains aspects of the work performed under the EoCoE project
as part of WP 2.3

1. Creation of one DNI forecast time series per hour for 48 hours, each with a time
horizon of 48 hours, for use in dispatch optimisation.

2. Creation of a numerical model for optimisation of thermal energy storage schedul-
ing in a CSP plant.

3. Creation of decision-making model for implementing optimal storage schedule sub-
ject to deviations in expected solar DNI.

4. Generation of optimised dispatch schedules subject to artificially erroneous day-
ahead commitment time series that was created with systematically imposed errors
in the DNI and spot price time series.

5. Simulation of power plant operation using the best-guess spot price and DNI
forecasts that are inherently erroneous, with plant operation decisions made by
decision-making controller to cope with deviations between forecasts DNI and real
DNI.

2. Power plant model and simulation boundary conditions

The purpose of this project was to optimise the dispatch of a CSP power plant under
uncertainties associated with forecasts of electricity market spot price and direct normal
irradiance (DNI). The plant location is on the island of Cyprus, where aerosols can have
a notable effect on the variation of DNI in clear-sky conditions.

A basic power plant model is used that is apt for optimisation using a MILP solver.
We base our model on that from Dominguez et al. [2012], with the addition of a generation
commitment penalty. The model code is included in Section A, and is written in the format

EINFRA-676629

6

M24 30/09/2017



D2.6 Formulation for optimization under uncertainty

Figure 1: A basic schematic that represents the energy flows defined by the optimisation model. Energy

may flow from the receiver to either the power block or to the thermal energy storage. Energy may also

flow from the thermal energy storage to the power block, having been stored for a time at which dispatch

conditions are more favourable.

accepted by Minizinc1. This plant model is solved using the g12 suite of optimisation tools.
For each of the scalar and array parameters, there is an associated file that provides the
necessary boundary conditions for the model. This file is in plain text, and its creation has
been automated using a Python wrapper in order to run the suite of simulations necessary
for this study.

A schematic of the plant appears in Figure 1. The reader should take care to note
that the elements that appear in the diagram are not a complete representation of a CSP
power plant, but rather a representation of the elements from which the optimisation is
comprised. The thermal energy storage, for example, would typically comprise a two-tank
system in which hot and cold molten salt is stored. The thermal energy storage element
is represented in the model, however, by a single variable Qs that represents the available
stored energy. Likewise with the power cycle, represented here as a single turbine elements,
and implemented in the model by an overall thermal-to-electric efficiency, ηcycle.

The DNI forecast time series provided by the Cyprus Institute is multiplied by a solar
field optical efficiency derived from a solar field model that simulates shading, blocking,
reflectivity, atmospheric attenuation, and receiver intercept. The solar field that was
simulated follows the sunflower pattern first presented by Noone et al. [2012]. The field is
the result of an optimisation that was performed for a plant comprised of 5000 heliostats,
each with an area of 120m2 optimised for a latitude of -33.38◦, which has been inverted
for operation in the northern hemisphere, given that the latitude is within 2 degrees of
the latitude of Cyprus. The solar multiple of the plant is 1.5 and the chosen number of
storage hours was 4.

2.1 Objective Function

Here the objective function of the power plant model is given, as it provides a
useful basis for understanding how the model works, and the different influences that are
investigated in subsequent sections,

1www.minizinc.org
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Revenue = ∆T

NT∑
t=1

(PtSPt − C∆P|Pt − Pt−1|)−∆T

Ncommit∑
t=1

Ccommit|Pcommit,t − Pt| (1)

where ∆t is the time interval for the model and is one hour in this case, NT is the number
of time steps, Pt is the power output from the turbine at time t, SPt is the spot price
at time t, C∆P is a monetary penalty for changing the output of the turbine, in this
case 1 Euro/MWh, Ncommit is the number of time steps remaining the period for which a
generation commitment has been made, Ccommit is the cost of deviation from the generation
commitment, in this case 10 Euros/MWh, and Pcommit is the committed power generation
at time t.

The constraints on the model include maximum and minimum turbine operation, a
minimum respective up and down time for the operation of the power block, and maximum
and minimum tank energy storage.

2.2 Day-ahead power commitment

In the European spot price market, a day-ahead power generation commitment must
be made at noon on the previous day. This power commitment estimates the generation
for the 24 hours of the following day, and is based on expected generation. In the case
of variable renewable energies, it represents a best estimation of generation and is usually
subject to uncertainties. Subsequent generation should follow this commitment, or may
be subject to a penalty that is proportional to the difference in the actual amount of gen-
erated power and the committed power. As a commitment penalty factor is included in
the optimisation objective function, the optimiser is able to make a decision on whether
generation is favourable at a particular time, while taking into account potential losses due
this penalty. In reality, the commitment penalty is influenced by market conditions at the
time-point of generation, where Figure 2 shows an example of a year of generation pental-
ties [Kraas et al., 2013], for which we have no model. We therefore assume a representative
penalty value of 10 Euros/MWh of difference between commitment and generation.

2.3 Simulation time window

The simulations are conducted to simulate plant operation from 12:00 10/08/2016
until 12:00 12/08/2016. We begin the simulations at 12 noon in order to make a gen-
eration commitment at the first time step based upon an optimisation using the current
spot price and DNI forecasts. This initial optimisation necessarily involves generation over
the remaining 12 hours of the first day, over which an existing generation schedule will
have already been committed. We first run the model assuming perfect forecast informa-
tion to create an existing commitment Pcommit for the first 12 hours of the simulation, a
commitment that in reality would have been made on the previous day.

3. NWP model for DNI forecasting

This section details the contribution of the Cyprus Institute to the project in creating
and providing DNI forecast time series.

Within the European Commission HORIZON 2020 project, www.EoCoE.eu, task
WP2.3, Optimal Operation of Concentrated Solar Power (CSP) under Weather Uncer-
tainty, The Cyprus Institute, has generated day-ahead forecasts of the direct normal ir-
radiance (DNI) for the Pentakomo CSP field facility that are based on a sophisticated

EINFRA-676629
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Figure 2: A contour plot representing the variation in commitment penalty prices over the course of a year

for the Spanish electricity market.

coupling of WRF-solar with a “solar” version of EMAC. The augmented EMAC model
results — a high resolution Earth System Model with fully coupled aerosol-chemistry-
cloud-radiation feedbacks [Adbelkader et al., 2015, Abdelkader et al., 2017], which has
been developed by S. Metzger, and colleagues at CyI and MPIC — show improved model
results of the Aerosol Optical depth (AOD) and the Global Horizontal Irradiation (GHI),
as shown in Figures 3, 4, and 5. These improvements further help to improve the DNI
forecasting, since the GHI and the DNI are strongly related. Both radiative properties
are largely influenced by the aerosol hygroscopic growth and the associated aerosol wa-
ter (AW) mass, which often controls the atmospheric visibility, haze and the formation
of clouds, especially of optically thin clouds. To allow an efficient application of a re-
search model, we have reduced the complexity of the required aerosol chemistry and AW
thermodynamics of our EMAC version to a minimum [Metzger et al., 2012, 2016a,b], so
that numerical forecasts can be obtained. Subsequently, we have coupled the AOD val-
ues of EMAC, which are calculated using sophisticated aerosol-chemistry, with the cloud
and radiation of WRF-solar (Figure 4) to improve DNI forecasting with WRF-solar. Our
coupled EMAC-WRF-solar results have been compared with observations at Pentakomo,
and against reference simulations of WRF-met, as used by the Cyprus met-office, shown
in Figure 4. Additionally, we have generated 48 day-ahead forecasts (each a 48 hours
prediction with a one-hour moving initialization), which are shown in Figure 5. These
coupled WRF-solar results show a considerable sensitivity to the AOD values provided
by EMAC, and can help to improve the DNI forecasting for certain conditions, i.e., when
aerosol loadings become dominant. Further improvements of the EMAC-WRF-solar cou-
pling might be required for DNI forecasting, which are, however, beyond the scope of this
WP2.3 contribution 2.

2The forecasts, reference simulations and observations have been delivered to RWTH Aachen. The
sub-task of CyI for WP2.3 is herewith completed. The PROTEAS facility in Cyprus has been utilized
to optimize predictions for local atmospheric conditions (turbidity / visibility, humidity), as these affect
the (nontrivial) irradiation attenuation relevant to GHI/DNI forecasting. The aerosol and 4-dimensional
radiative model output can be further used to enhance predic-tions of the optimal energy storage schedules,
subject also to market spot prices (by J. Cumptson, A. Mitsos, www.AVT.RWTH-Aachen.de) in order to
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Figure 3: Map of Cyprus and model forecasts. Daily means of long-term observations (black) of the global

horizontal irradiance (GHI) obtained at The Cyprus Institute’s Solar Research Facility “PROTEAS”,

Pentakomo, and model calculations with the EMAC atmospheric chemistry-climate model (red). Overlaid

(green) are the EMAC results for the Aerosol Optical Depth (AOD) - the AOD peaks nicely coincides with

the GHI/DNI troughs. The high AOD peaks in spring 2015 are caused by strong outflow events of mineral

dust, which is captured rather well by this high-resolution version of EMAC, which has been nudged to

www.ECWMF.int ERA-Interim reanalysis data. Our EMAC aerosol version is developed and maintained

at the Cyprus Institute, www.CyI.ac.cy, in close collaboration with the Max Planck Institute for Chemistry

(www.MPIC.de).
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Figure 4: Coupling of EMAC and WRF-solar through AOD.

Figure 5: EMAC simulation versus AOD ground station observations.
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Figure 6: WRF-solar reference simulations versus WRF-met and observations.

Figure 7: WRF-solar day-ahead forecasts driven by EMAC AOD.
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Figure 8: The time series of measured DNI values. Each time point in this this time series is built from

the first time step taken from the respective rolling forecast time series.

4. Forecasting techniques and resultant time series

The purpose of the current investigation is to determine the effect that an inaccurate
DNI forecast and spot price forecast has on the subsequent generation schedule and revenue
of the power plant. In this section we present the techniques used to forecast a suite of
time series that are used to simulate real-time operation of CSP power plants in Section 6.
First, we present the results of the WRF-Solar model in generating the DNI time series,
and second, the results from an ARIMA model that was trained using historical electricity
market spot price data is presented.

4.1 DNI Forecast Time Series

In order to conduct this study, 48 separate time series of hourly DNI forecasts were
provided. Each of the time series is separated by an hour, and therefore represents forecasts
being made at hourly intervals over the period of two days. The time horizon of these
forecasts is 48 hours, which allows the simulation of real-time optimisation of CSP power
plant dispatch two days in advance being performed every hour over two days of operation.
The subsequent “observed” DNI time series was taken from the first time step of each of
the forecast time series, and is shown in Figure 8).

The DNI forecasts are overlaid upon one another in Figure 9. A close-up of the
forecasts for one of the days with clear-sky conditions is shown in Figure 10. In this figure,
it is evident that there is a distribution of the forecast values for a given time step. In the
time series of measured values of Figure 8, only clear-sky days occur, despite some of the
forecast values exhibiting drops in DNI that indicate the presence of clouds. These time

minimize costs for grid and utility operators, as well as for the general public. This collaborative work also
forms the first attribution of uncertainty in plant operation to a physical cause, in this case to minimize
the mirror surface error.
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Figure 9: Forecasts of DNI data made using the WRF Solar model, with advanced aerosol modelling from

the Cyprus Institute

periods of cloud cover therefore never eventuated. This is important in the investigation
of Section 5.1, where a multiplier is applied to the DNI time series that is consistent with
variations in DNI during clear sky conditions.

In order to investigate the effect of the forecast time horizon on the accuracy of the
forecast, the standard deviation of the DNI forecasts as a function of the time interval
between the current time and the predicted value is given in Figure 11, against a baseline
of the measured DNI time series. Care should be taken in interpreting these plots, as they
do not represent a true ensemble forecast, but rather the values from different forecast time
series generated at different times. Furthermore, the use of this technique means that the
number of available data points for each time-step-in-advance declines by 1 with each time
step, as the later forecast time series have predictions that are outside the time-range of
the measured data, such that there is no basis for comparison from which a deviation can
be posited.

Referring to Figure 11, the large standard deviations observed for time horizons
greater than 34 hours in advance are due to predicted cloud cover that never eventuated.
Because the standard deviation of the forecasts under clear-sky conditions are far smaller,
a close-up of these values is given in Figure 12.

It is expected that the further in advance a forecast is, the more the forecasts deviate
from the subsequently measured value. The standard deviation does increase up to three
hours ahead, and then exhibits variable behaviour thereafter. This is an artefact of the
prediction technique, and it may be that the magnitude of the forecast and subsequent
measured DNI in Cyprus, using the model from the Cyprus Institute described in Section 3,
are accurate to a standard deviation of approximately 4 W/m2, as observed. Under clear-
sky conditions, this represents the ability to determine power plant energy availability to
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Figure 10: Close-up of forecasts shown in Fig. 9 for a time-period over which the solar DNI is peaking

around midday.

an accuracy of better than 0.5%. As we are working with a limited dataset, the validity
of this high forecast accuracy is a topic for further work.

4.2 Spot Price Forecasts

We use publicly available historical electricity spot price data for the Spanish market
in order to inform an ARIMA model for predicting spot price data. This is displayed in
Figure 13, where an example training interval and an example of a subsequent two-day
price prediction is shown. Spanish market data is used for this study of the CSP in Cypriot
weather conditions as while there are currently plans to open the Cypriot electricity market
to spot price trading, there is currently no such market.

The suite of predicted prices used for this study are shown in Figure 14 and are
overlaid on top of one another in the same way as in Figure 9. From this figure, it appears
that the ARIMA model predicts the time of the price peaks to within an hour and correctly
predicts maxima and minima, while the magnitude of the predicted peaks are variable.

This variation is highlighted in Figure 15, where the residual values of the spot
price forecasts are plotted against a baseline of the subsequent real time series. This is
important in the investigation of Section 5.1, where a multiplier is applied to the residual
of the spot price time series over a baseline of the average spot price in order to simulate
errors in the price peaks.

As with the DNI forecasts, the standard deviation of the forecast spot price time
series is shown as a function of forecast lead time over the two days of actual operation
for which rolling forecasts are available in Figure 16. We also remind the reader that less
data points are available for forecasts with a greater lead time. This figure shows that the
further in advance the lead time of the forecast data point is, the higher the uncertainty, up
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Figure 11: Standard deviation of the DNI forecasts as a function prediction time interval. The number

of data points used to calculated each standard deviation varies, with less data points available for longer

lead times.

Figure 12: Closeup of the standard deviation shown in Figure 11 to emphasise the standard deviation of

the data for clear sky predictions and for which a greater number of data points were available.
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Figure 13: Forecast of the spot price made using an ARIMA model(red), overlaid on the actual spot price

(blue). Uncertainties from the ARIMA model are shown in grey. An attempt at defining a spike threshold

is evident (yellow) and is the topic of ongoing work.

to about 30 hours in advance, beyond which the uncertainty declines. As it is unlikely that
larger lead times in the forecast values should have lower error distributions, this decline
may result from the declining number of data points available for these large advances
in forecast, introducing inaccuracy into the statistics. The average of the measured spot
price over the two time intervals was 40.2 Euros/MWh. We therefore claim an accuracy
over the two days of operation of better than 10%, subject to the aforementioned caveat
for long forecast time horizons.

5. Generation schedule with incorrect commitment

In this section, we present results from the optimisation of the generation schedule
when the generation commitment is incorrectly estimated.

5.1 Artificial Errors

In order to investigate the effect of uncertainty on the forecast DNI and spot prices in
making generation commitments, the time series were systematically altered in a way that
is consistent with the errors in forecasts that one might expect under clear sky conditions
using an ARIMA model for spot price predictions.

The DNI time series was multiplied by constant factor. Normally, the shape of the
DNI time series is preserved under these conditions, with the magnitude of the DNI being
affected by local atmospheric conditions. The DNI multipliers used range from 0.1 to 1.2 in
increments of 0.1, and Figure 17 shows the resulting time series of thermal energy incident
on the receiver once the measured time series has been multiplied by these factors. For
the sake of inquiry, the range of DNI multipliers that were used to generated these time
series are much wider than the affects of atmospheric aerosol scattering under clear sky
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Figure 14: Forecasts of spot price from ARIMA model overlaid on one another. The peaks predicted by

the model are consistent and accurate, while the magnitude of the peaks is variable.

Figure 15: Residuals of spot-price forecasts when the actual spot price is subtracted.
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Figure 16: Standard deviation of spot-price forecasts as a function of time horizon. The number of data

points used to calculate each standard deviation varies, with less data points available for longer time

horizons.

conditions may warrant.

The magnitude of the peaks of the spot price data were altered subject to a spot
price factor. First the average of the spot-price time series was taken and then subtracted
from the time series. The residual is then mutliplied by the spot price factor, after which
the average is added once again to the time series. This method was chosen to accord with
the observation that the spot price errors were largely in the magnitude of the peaks. The
spot price factors used are: [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16], and Figure 18 shows
the resulting spot price time series used in the forecast. For the sake of inquiry, the spot
price factors return much larger variations in spot price peaks than were observed in the
errors from the ARIMA model displayed in Figure 18.

5.2 Variation of commitment schedule

Figure 19 gives the resultant commitment schedules, where the first 12 hours is unaf-
fected due to the fact that it represents an assumed commitment that was theoretically set
on the day before the optimisation was conducted. Each subplot represents the committed
schedule over a range of spot price factors for a given DNI multiplier, that is represented
in the associated title.

This study has the added bonus of representing the optimal schedule should the
used DNI and spot price time series be a true representation of these factors. It allows us
to view how the optimisation algorithm shifts generation subject to a wide range of spot
price variation and total incident solar irradiation under clear sky conditions.

In the case of low to moderate DNI price multipliers, the energy generation schedule
is altered with respect to the spot price factor in order to exploit spot price peaks. For
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Figure 17: Figure to demonstrate the different thermal energy input values used as forecast time series for

the scheduling optimisation. Here the original DNI forecast has been used as input to solar field model.

Solar field efficiency affects the time series. The black time series represents the actual DNI measured over

the simulation time interval.

Figure 18: Figure to demonstrate the different SP values used as forecast time series for the optimisation.

The black time series represents the actual spot price over the time interval of the simulation.
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Figure 19: Generation schedule used for commitment subject to variations in the spot price and DNI that

are imposed in order to represent a wide range of forecast errors. The time axis represents the time horizon,

and not the hour of the day, and generation schedule begins at 12 noon on the 10th of August 2016.
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relatively low spot price factors, which correspond to low spot price variability, the incen-
tive to store for later generation is largely removed in favour of avoiding losses associated
with storage and ramping the turbine up and down, the latter being defined by the cost
factor C∆P . For higher DNI multipliers, the total irradiance is higher and storage is used
to distribute the generation over a wider time window in order to make full use of the large
amount of incoming solar radiation that is subject to the bottleneck of maximum turbine
output. The latter case is therefore less selective with respect to generation time, while
still avoiding the price troughs associated with overnight generation.

5.3 Variation of actual generation schedule with changes in commitment

The range of different commitment schedules are used as inputs to the model for op-
timising the actual generation schedule using the measured solar energy input from Figure
8 and the actual spot price data of Figure 14. The simulations conducted use a real-time
optimisation approach where the operational point for the subsequent hour of generation
is determined using a forecast over the following 48 hours, assuming perfect knowledge of
the forecast DNI and spot price, but subject to the erroneous generation commitments
presented in Fig 19. Assuming perfect knowledge in this way isolates the effect of erro-
neous generation commitment, which is an important consideration in a market where
generation commitments are made a day ahead.

What is most evident from these figures is that for the representative generation
commitment penalty of Ccommit = 10 Euros/MWh, the optimal generation schedule is
largely unaffected by the range of different commitment time series that were used. In
this case, with a relatively modest solar multiple of 1.5 and 4 storage hours, the amount
of energy incident on the power plant is enough that the turbine must generate at full
capacity for a majority of the available generation time.

For completeness, the revenues associated with these time series, along the commit-
ment penalties, are presented in Appendix B. The sum of the revenues are presented in
Figure 21. As expected from the negligible variations in the generations schedules pre-
sented in Figure 20, the gross revenue from the power plant for the different multipliers
shows very little variation.

The penalties due to incorrect commitment as a function of the DNI multiplier and
the spot price factor are shown in Figure 22. The DNI multiplier has the greatest effect
on the subsequent penalty, as an increase in DNI with respect to that expected when
commitment was made forces the plant to generate at a higher output in comparison
to the commited schedule. The penalties represent, at most, approximately 15% of the
revenue from the power plant for the chosen commitment penalty factor. This represents
an upper limit of the penalty, as the extremes of the DNI multiplier and the spot price
factor represent extremes in commitment schedule errors for this case study. It should be
noted here than an increase in the commitment penalty factor Ccommit should not imply
a linear increase in the penalty, as the optimiser may determine a different schedule for
larger penalties in order to avoid them.

Figure 23 shows the net income of the power plant as a function of the spot price
factor and the DNI multiplier. This is the revenue of the power plant minus the penalties
due to incorrect commitment, and the trend observed here roughly approximates the
inverse trend of the penalties due to the fact that revenue is approximately constant
across all spot price factors and DNI multipliers.
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Figure 20: Optimal generation schedule subject to a range of erroneous generation commitments, subject to

the actual DNI and spot prices, with operation made assuming perfect forecast knowledge. The spot price

factor and the DNI multiplier labels represent those that were used to estimate the generation commitment.
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Figure 21: Sum of revenues ranging over spot price and DNI errors that were present when the commitment

schedule was made.

Figure 22: Sum of penalties ranging over spot price and DNI errors.
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Figure 23: Sum of net revenue ranging over spot price and DNI errors.

Future work may focus on higher generation penalties, along with power plants
that have lower solar multiples for which altering the generation schedule to match the
commitment may be more advantageous.

6. Optimal operation using forecasts and CSP plant controller

In this section, we present real-time operation of the CSP power plant. At a given
time step t, the generation schedule for the next two days is optimised according to the
forecast DNI and spot price time series made at that time. Operation is then determined
for t+ 1 subject to the expected operation over this time horizon. Due to the uncertainty
in the forecasts, energy input to the power plant at t+ 1 may be different from the forecast
value. A plant controller was therefore created that represents a real-time decision-making
approach in order to account for deviations from the forecast power plant operation set
point. This represents a formulation for operation of a CSP plant under uncertainty.

Energy from the receiver may either be directed to the storage tank or to the power
block, with the possibility that some or all of the power to the power block comes from
storage. A simplified summary of control approach follows3:

• Generation from storage should match the amount dictated by the optimiser.

• The ratio of the solar energy directed to generation over the solar energy directed
to storage should be preserved.

– When turbine output is maximised due high input solar energy, the ratio
is not preserved. In this case, the turbine output is maximised and the

3A full logic diagram of the controller can be made available from the author on request
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remainder is directed to storage.

– When the storage output is also maximised, the rest of the energy is discarded
by defocusing the mirrors from the receiver.

• If the amount of input thermal energy is not enough to run the turbine, the power
plant is shut down.

The operational set-point determined by the controller is fed into the initial conditions
of the optimisation for the subsequent time step. This is performed recursively until the
two days of operation have been simulated. The resultant generation time series is then
compared to the ideal optimised generation time series that is calculated using the real
measured data. The comparison allows to attribute a monetary value to the effects of
both the uncertainties in the forecast data and the limitations of the plant controller on
plant revenue.

Figure 24 shows the results from the optimised real-time operation using the rolling
DNI and spot price forecasts with the CSP plant controller, in comparison to the ideal
schedule optimised using the subsequent measured values.

Figure 24: Results from the simulation using the forecast time series and the CSP plant controller to

estimate best operation with uncertain information about future operation (blue) in comparison to the

ideal optimised schedule calculated using the subsequent measured DNI and spot price values (orange).

The controller exhibits a tendency to cancel generation earlier in the day and to
being earlier the following day. The reason for this is uncertain because it is confounded
by both the presence of uncertainty in the real-time operation, and the fact that the perfect
forecast has information up to 96 hours in advance that may influence the generation profile
over the current time window.

The total revenue over the 48-hour operational window for the real-time optimisation
case using the plant controller is $1.941 ×105 in comparison to the ideal case of $1.965 ×105,
such that operating the CSP power plant using the forecast data achieved approximately
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98.7% of the revenue in comparison to the ideal case.

Assuming that this is representative of the lost income due to uncertainty, an op-
portunity to increase plant revenue by 1.2% with respect to the real-time operation value
exists, which may be significant once one accounts for the fraction of revenue that repre-
sents profit in a competitively priced power plant.

7. Conclusion

In this project, the Cyprus Institute has incorporated new methods for predicting
aerosol concentrations in the local region in order to inform forecasts of direct normal
irradiance suitable for use in concentrating solar power plant operational simulations. The
forecast of DNI provided by the the Cyprus Institute represent an error of up to 0.5% up
to a time horizon of 48 hours.

RWTH Aachen has first provided an estimate of the effect of systematically generated
uncertainties in spot price and DNI data in order to investigate the influence of these
uncertainties on penalties associated with deviations from a day-ahead commitment. The
presented case study power plant had a solar multiple of 1.5 and 4 hours of storage, and
clear-sky conditions were simulated in order to correspond to the measured time series
provided by the Cyprus Institute over the time period of interest. Results indicate that
uncertainties in the day ahead commitment are associated with an increase in penalties,
but, that under an educated assumption of a deviation-from-commitment penalty of 10
Euros/MWh did not indicate a significant change in the generation schedule for the case
study power plant.

RWTH Aachen then used a suite of rolling DNI forecasts, provided by the Cyprus
institute, on an hourly basis with a time horizon of two days, along with forecasts of
electricity spot price data generated in-house using an ARIMA model that predicts spot
prices based on historical spot price data, as input to the CSP plant scheduling optimi-
sation model. The ARIMA model is accurate is within 10% over a time horizon of two
days. A plant controller heuristic was introduced in order to cope with deviations from
the forecast input energy and associated optimal plant set point. The resulting simulated
real-time operation of the power plant provided a schedule for plant operation that gen-
erated earlier in the day and shut down earlier in the evening. This may be the result
of the limited forecast time horizon in comparison to the simulated ideal case. This may
also be a result of limitation of the controller to deal with the uncertainties in the forecast
data. Comparison of the real-time operation to the ideal case indicate that 98.7% of the
maximal possible revenue has been achieved for this case study.

8. Future Work

This formulation for optimisation of plant operation under uncertainty can be further
improved with the implementation of a robust controller in order to account for forecasted
operation near the turbine operational limits and storage limits. This can be facilitated
with the generation of ensemble forecasts from a NWP model in order to estimate the
uncertainty envelope that should define the limits of DNI suitable for creating the robust
model.

This can lead to further investigations of power plant operation in the case of variable
DNI on cloudy days, which could cause more unpredictability for the plant controller and
for the day ahead commitment.
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A. Section 1

int: N_T; %number of timesteps

int: N_commit;

float: C_commit;

float: T_len; %length of each timestep (h)

float: T_up; %minimum down-time for the solar power plant (h)

float: T_down; %minimum up-time of the solar power plant (h)

int: L;

int: M;

int: N_on;

int: N_off;

int: U_0; %initial commitment status of the generation unit: 1 if online, 0 otherwise

float: eta_tank; %storage efficiency

float: eta_cycle; %power cycle efficiency

float: P_max; %capacity of the concentrating solar power plant (MWe)

float: P_min; %minimum electrical output from the power block

float: Q_smax; %Energy capacity of the thermal energy storage (MWhth)

float: Q_smin; %minimum energy storage

float: R_dis; %ramp-down limit for discharging the thermal energy storage (MWe/h)

float: R_chg; %ramp-up limit for discharging the thermal energy storage (MWe/h)

%initial conditions

float: Q_s0; %initial thermal energy in tank

float: P_0; %initial electric power output of the CSP plant

float: Qdot_re0; %initial thermal power from the field to the cycle

float: Qdot_se0; %initial thermal power from the storage to the cycle

float: Qdot_rs0; %initial thermal power from the solar field to storage

float: Qdot_pass0; %initial thermal power being bypassed from storage or generation

float: C_deltaP; %cost in euros per MWh for changing the output of the turbine.

array[1..N_T] of float: SP;

array[1..N_T] of float: Q_SF;

array[1..N_commit] of float: P_commit;

array[1..N_T+1] of var float: P; %electric power output of the CSP plant

array[1..N_T+1] of var float: Qdot_re; %electric power directly produced from the solar field

array[1..N_T+1] of var float: Qdot_rs; %thermal power from the solar field to storage

array[1..N_T+1] of var float: Qdot_se; %thermal power from storage used for generation

array[1..N_T+1] of var float: Qdot_pass; %thermal power bypassed from storage or generation

array[1..N_T+1] of var float: Q_s; %thermal energy in tank at end of interval

array[1..N_T] of var float: deltaP_abs; %absolute value of the change in electricity

array[1..N_commit] of var float: delta_commit_abs;

array[1..N_T+1] of var int: U; %binary variable. Plant on = 1, plant off = 0

constraint P[1] = P_0;

constraint Qdot_re[1] = Qdot_re0;

constraint Qdot_se[1] = Qdot_se0;

constraint Qdot_rs[1] = Qdot_rs0;

constraint Qdot_pass[1] = Qdot_pass0;

constraint Q_s[1] = Q_s0;

constraint Q_s[N_T+1] = Q_s0;

constraint U[1] = U_0;
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constraint forall(t in 2..N_T+1)(P[t] >= P_min * U[t]);

constraint forall(t in 2..N_T+1)(P[t] <= P_max * U[t]);

constraint forall(t in 2..N_T+1)(Q_s[t] >= Q_smin);

constraint forall(t in 2..N_T+1)(Q_s[t] <= Q_smax);

constraint forall(t in 2..N_T+1)(Qdot_rs[t] >= 0);

constraint forall(t in 2..N_T+1)(Qdot_re[t] >= 0);

constraint forall(t in 2..N_T+1)(Qdot_se[t] >= 0);

constraint forall(t in 2..N_T+1)(Qdot_pass[t] >= 0);

constraint forall(t in 2..N_T+1)(U[t] <= 1);

constraint forall(t in 2..N_T+1)(U[t] >= 0);

constraint forall(t in 2..N_T+1)(Q_SF[t-1] = Qdot_re[t] + Qdot_rs[t] + Qdot_pass[t]);

constraint forall(t in 2..N_T+1)(P[t] = eta_cycle * (Qdot_re[t] + Qdot_se[t]));

constraint forall(t in 1..N_T)(Q_s[t+1] = Q_s[t] + T_len * (Qdot_rs[t+1] - Qdot_se[t+1] / eta_tank));

constraint forall(t in 1..N_T)(eta_tank * eta_cycle * (Qdot_se[t+1] - Qdot_se[t]) <= R_dis);

constraint forall(t in 1..N_T)(eta_cycle * (Qdot_rs[t+1] - Qdot_rs[t]) <= R_chg);

constraint forall(t in 2..N_T+1)((P[t] - P[t-1]) <= deltaP_abs[t-1]); %from Vasallo and Bravo

constraint forall(t in 2..N_T+1)((P[t-1] - P[t]) <= deltaP_abs[t-1]); %from Vasallo and Bravo

constraint forall(t in 2..N_commit+1)((P_commit[t-1] - P[t]) <= delta_commit_abs[t-1]);

constraint forall(t in 2..N_commit+1)((P[t] - P_commit[t-1]) <= delta_commit_abs[t-1]);

constraint sum(t in 2..L+1)(1 - U[t]) = 0;

constraint forall(t in L+2..N_T-round(T_up/T_len)+2)

(sum(j in t..t+round(T_up/T_len)-1)(U[j]) >= T_up/T_len * (U[t] - U[t-1]));

constraint forall(t in N_T-round(T_up/T_len)+3..N_T+1)

(sum(j in t..N_T+1)(U[j] - (U[t] - U[t-1])) >= 0);

constraint sum(t in 2..M+1)(U[t]) = 0;

constraint forall(t in M+2..N_T-round(T_down/T_len)+2)

(sum(j in t..t+round(T_down/T_len)-1)(1 - U[j]) >= T_down/T_len * (U[t-1] - U[t]));

constraint forall(t in N_T-round(T_down/T_len)+3..N_T+1)

(sum(j in t..N_T+1)(1 - U[j] - (U[t-1] - U[t])) >= 0);

solve maximize sum(t in 2..N_T+1)

(T_len * (P[t] / 1e3 * SP[t-1]) - T_len * C_deltaP * deltaP_abs[t-1] / 1e3) -

sum(t in 1..N_commit)(T_len * C_commit * delta_commit_abs[t] / 1e3) -

sum(t in 2..N_T+1)((N_T + 1 - t) * Qdot_pass[t]) / 10000000 -

sum(t in 2..N_T+1)(Qdot_rs[t]) / 100000;

B. Revenues and penalties associated with the erroneous commmitments
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Figure 25: Revenue time series.
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Figure 26: Net revenue.
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Figure 27: Penalties.
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