
A Tutorial on Hidden Markov Models using Stan
Luis Damiano (Universidad Nacional de Rosario), Brian Peterson (University of

Washington), Michael Weylandt (Rice University)
2017-12-15

Contents
1 The Hidden Markov Model 1

1.1 Model specification . 2
1.2 The generative model . 3
1.3 Characteristics . 4
1.4 Inference . 5
1.5 Parameter estimation . 11
1.6 Worked example . 12

2 The Input-Output Hidden Markov Model 16
2.1 Definitions . 16
2.2 Inference . 17
2.3 Parameter estimation . 19
2.4 A simulation example . 20

3 A Markov Switching GARCH Model 27

4 Acknowledgements 30

5 Original Computing Environment 30

6 References 31

This case study documents the implementation in Stan (Carpenter et al. 2017) of the Hidden Markov Model
(HMM) for unsupervised learning (Baum and Petrie 1966; Baum and Eagon 1967; Baum and Sell 1968; Baum
et al. 1970; Baum 1972). Additionally, we present the adaptations needed for the Input-Output Hidden
Markov Model (IOHMM). IOHMM is an architecture proposed by Bengio and Frasconi (1994) to map input
sequences, sometimes called the control signal, to output sequences. Compared to HMM, it aims at being
especially effective at learning long term memory, that is when input-output sequences span long points.
Finally, we illustrate the use of HMMs as a component within more complex constructions with a volatility
model taken from the econometrics literature. In all cases, we provide a fully Bayesian estimation of the
model parameters and inference on hidden quantities, namely filtered and smoothed posterior distribution of
the hidden states, and jointly most probable state path.

A Tutorial on Hidden Markov Models using Stan is distributed under the Creative Commons Attribution 4.0
International Public License. Accompanying code is distributed under the GNU General Public License v3.0.
See the README file for details. All files are available in the stancon18 GitHub repository.

1 The Hidden Markov Model

Real-world processes produce observable outputs characterized as signals. These can be discrete or continuous
in nature, can be pure or embed uncertainty about the measurements and the explanatory model, come from
a stationary or non-stationary source, among many other variations. These signals are modeled to allow for

1

http://mc-stan.org/
cc-by-v4.0.md
cc-by-v4.0.md
gnu-gpl-v3.0.md
README.md
https://github.com/luisdamiano/stancon18

both theoretical descriptions and practical applications. The model itself can be deterministic or stochastic,
in which case the signal is characterized as a parametric random process whose parameters can be estimated
in a well-defined manner.

Many real-world signals exhibit significant autocorrelation and an extensive literature exists on different
means to characterize and model different forms of autocorrelation. One of the simplest and most intuitive is
the higher-order Markov process, which extends the “memory” of a standard Markov process beyond the
single previous observation. The higher-order Markov process, unfortunately, is not as analytically tractable
as its standard version and poses difficulties for statistical inference. A more parsimonious approach assumes
that the observed sequence is a noisy observation of an underlying hidden process represented as a first-order
Markov chain. In other terms, long-range dependencies between observations are mediated via latent variables.
It is important to note that the Markov property is only assumed for the hidden states, and the observations
are assumed conditionally independent given these latent states. While the observations may not exhibit any
Markov behavior, the simple Markovian structure of the hidden states is sufficient to allow easy inference.

1.1 Model specification

HMM involve two interconnected models. The state model consists of a discrete-time, discrete-state1 first-
order Markov chain zt ∈ {1, . . . ,K} that transitions according to p(zt|zt−1). In turns, the observation
model is governed by p(yt|zt), where yt are the observations, emissions or output.2 The corresponding joint
distribution is

p(z1:T ,y1:T) = p(z1:T)p(y1:T |z1:T) =
[
p(z1)

T∏
t=2

p(zt|zt−1)
] [

T∏
t=1

p(yt|zt)
]
.

This is a specific instance of the state space model family in which the latent variables are discrete. Each
single time slice corresponds to a mixture distribution with component densities given by p(yt|zt), thus HMM
may be interpreted as an extension of a mixture model in which the choice of component for each observation
is not selected independently but depends on the choice of component for the previous observation. In the
case of a simple mixture model for an independent and identically distributed sample, the parameters of
the transition matrix inside the i-th column are the same, so that the conditional distribution p(zt|zt−1) is
independent of zt−1.

When the output is discrete, the observation model commonly takes the form of an observation matrix

p(yt|zt = k, θ) = Categorical(yt|θk)

Alternatively, if the output is continuous, the observation model is frequently a conditional Gaussian

p(yt|zt = k, θ) = N (yt|µk,Σk).

The latter is equivalent to a Gaussian mixture model with cluster membership ruled by Markovian dynamics,
also known as Markov Switching Models (MSM). In this context, multiple sequential observations tend to
share the same location until they suddenly jump into a new cluster.

The non-stochastic quantities of the model are the length of the observed sequence T and the number of
hidden states K. The observed sequence yt is a stochastic known quantity. The parameters of the models
are θ = (π1, θh, θo), where π1 is the initial state distribution, θh are the parameters of the hidden model and
θo are the parameters of the state-conditional density function p(yt|zt). The form of θh and θo depends on

1Both the discrete-time and discrete-state assumptions can be relaxed, though we do not pursue that direction in this paper.
2The output can be univariate or multivariate depending on the choice of model specification, in which case an observation at

a given time index t is a scalar yt or a vector yt respectively. Although we introduce definitions and properties along an example
based on a univariate series, we keep the bold notation to remind that the equations are valid in a multivariate context as well.

2

the specification of each model. In the case under study, state transition is characterized by the K ×K sized
transition matrix with simplex rows A = {aij} with aij = p(zt = j|zt−1 = i).

The following Stan code illustrates the case of continuous observations where emissions are modeled as
sampled from the Gaussian distribution with parameters µk and σk for k ∈ {1, . . . ,K}. Adaptation for
categorical observations should follow the guidelines outlined in the manual (Stan Development Team 2017c,
sec. 10.6).

data {
int<lower=1> T; // number of observations (length)
int<lower=1> K; // number of hidden states
real y[T]; // observations

}

parameters {
// Discrete state model
simplex[K] pi1; // initial state probabilities
simplex[K] A[K]; // transition probabilities

// A[i][j] = p(z_t = j | z_{t-1} = i)

// Continuous observation model
ordered[K] mu; // observation means
real<lower=0> sigma[K]; // observation standard deviations

}

1.2 The generative model

We write a routine in the R programming language for our generative model. Broadly speaking, this involves
three steps:

1. The generation of parameters according to the priors θ(0) ∼ p(θ).
2. The generation of the hidden path z(0)

1:T according to the transition model parameters.
3. The generation of the observed quantities based on the sampling distribution y(0)

t ∼ p(yt|z
(0)
1:T , θ

(0)).

We break down the description of our code in these three steps.
runif_simplex <- function(T) {

x <- -log(runif(T))
x / sum(x)

}

hmm_generate <- function(K, T) {
1. Parameters
pi1 <- runif_simplex(K)
A <- t(replicate(K, runif_simplex(K)))
mu <- sort(rnorm(K, 10 * 1:K, 1))
sigma <- abs(rnorm(K))

2. Hidden path
z <- vector("numeric", T)

z[1] <- sample(1:K, size = 1, prob = pi1)
for (t in 2:T)

z[t] <- sample(1:K, size = 1, prob = A[z[t - 1],])

3

3. Observations
y <- vector("numeric", T)
for (t in 1:T)

y[t] <- rnorm(1, mu[z[t]], sigma[z[t]])

list(y = y, z = z,
theta = list(pi1 = pi1, A = A,

mu = mu, sigma = sigma))
}

1.2.1 Generating parameters from the priors

The parameters to be generated include the K-sized initial state distribution vector π1 and the K × K
transition matrix A. There are (K − 1)(K + 1) free parameters as the vector and each row of the matrix are
simplexes.

We set up uniform priors for π1 and A, a weakly informative Gaussian for the location parameter µk and a
weakly informative half-Gaussian that ensures positivity for the scale parameters σk. An ordinal constraint is
imposed on the location parameter to restrict the exploration of the symmetric, degenerate mixture posterior
surface to a single ordering of the parameters, thus solving the non-identifiability issues inherent to the
model density (Betancourt 2017). In the simulation routine, the location parameters are adjusted to ensure
that the observations are well-separated. We refer the reader to the Stan Development Team’s Prior Choice
Recommendations Wiki article for advice on selecting priors which are simultaneously computationally efficient
and statistically reasonable. Given the fixed quantity K, we draw one sample from the prior distributions
θ(0) ∼ p(θ).

1.2.2 Generating the hidden path

The initial hidden state is drawn from a multinomial distribution with one trial and event probabilities given
by the initial state probability vector π(0)

1 . Given the fixed quantity T , the transition probabilities for each of
the following steps t ∈ {2, . . . , T} are generated from a multinomial distribution with one trial and event
probabilities given by the i-th row of the transition matrix A(0)

1 , where i is the state at the previous time
step z(0)

t−1 = i. The hidden states are subsequently sampled based on these transition probabilities.

1.2.3 Generating data from the sampling distribution

The observations conditioned on the hidden states are drawn from a univariate Gaussian density with
parameters µ(0)

k and σ(0)
k .

1.3 Characteristics

One of the most powerful properties of HMM is the ability to exhibit some degree of invariance to local
warping of the time axis. Allowing for compression or stretching of the time, the model accommodates for
variations in speed. By specification of the latent model, the density function of the duration τ in state i is
given by

pi(τ) = (Aii)τ (1−Aii) ∝ exp(−τ lnAii),

which represents the probability that a sequence spends precisely τ steps in state i. The expected duration
conditional on starting in that state is

4

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

τ̄i =
∞∑
τ=1

τpi(τ) = 1
1−Aii

.

The density is an exponentially decaying function of τ , thus longer durations are less probable than shorter
ones. In applications where this proves unrealistic, the diagonal coefficients of the transition matrix Aii ∀ i
may be set to zero and each state i is explicitly associated with a probability distribution of possible duration
times p(τ |i) (Rabiner 1990).

1.4 Inference

There are several quantities of interest that can be inferred via different algorithms. Our code contains the
implementation of the most relevant methods for unsupervised data: forward, forward-backward and Viterbi
decoding algorithms. We acknowledge the authors of the Stan Manual for the thorough illustrations and
code snippets, some of which served as a starting point for our own code. As estimation is treated later, we
assume that model parameters θ are known.

Table 1: Summary of the hidden quantities and their corresponding
inference algorithm. † Time complexity is reduced to O(KT) for
inference on a left-to-right (upper triangular) transition matrix.

Name Hidden Quantity Availability at Algorithm Complexity
Filtering p(zt|y1:t) t (online) Forward O(K2T) O(KT)†
Smoothing p(zt|y1:T) T (offline) Forward-backward O(K2T) O(KT)†
Fixed lag smoothing p(zt−`|y1:t), ` ≥ 1 t+ ` (lagged) Forward-backward O(K2T) O(KT)†
State prediction p(zt+h|y1:t), h ≥ 1 t
Observation prediction p(yt+h|y1:t), h ≥ 1 t
MAP Estimation argmaxz1:T p(z1:T |y1:T) T Viterbi decoding O(K2T)
Log likelihood p(y1:T) T Forward O(K2T) O(KT)†

1.4.1 Filtering

A filter infers the posterior distribution of the hidden states at a given step t based on all the information
available up to that point p(zt|y1:t). It achieves better noise reduction than simply estimating the hidden
state based on the current estimate p(zt|yt). The filtering process can be run online, or recursively, as new
data streams in.

Filtered marginals can be computed recursively using the forward algorithm (Baum and Eagon 1967). Let
ψt(j) = p(yt|zt = j) be the local evidence at step t and Ψ(i, j) = p(zt = j|zt−1 = i) be the transition
probability. First, the one-step-ahead predictive density is computed

p(zt = j|y1:t−1) =
∑
i

Ψ(i, j)p(zt−1 = i|y1:t−1).

Acting as prior information, this quantity is updated with observed data at the step t using the Bayes rule,

αt(j) , p(zt = j|y1:t)
= p(zt = j|yt,y1:t−1)
= Z−1

t ψt(j)p(zt = j|y1:t−1)

5

where the normalization constant is given by

Zt , p(yt|y1:t−1) =
K∑
l=1

p(yt|zt = l)p(zt = l|y1:t−1) =
K∑
l=1

ψt(l)p(zt = l|y1:t−1).

This predict-update cycle results in the filtered belief states at step t. As this algorithm only requires the
evaluation of the quantities ψt(j) for each value of zt for every t and fixed yt, the posterior distribution of
the latent states is independent of the form of the observation density or indeed of whether the observed
variables are continuous or discrete (Jordan 2003). In other words, αt(j) does not depend on the complete
form of the density function p(y|z) but only on the point values p(yt|zt = j) for every yt and zt.

Let αt be a K-sized vector with the filtered belief states at step t, ψt(j) be the K-sized vector of local evidence
at step t, Ψ be the transition matrix and u� v be the Hadamard product, representing element-wise vector
multiplication. Then, the Bayesian updating procedure can be expressed in matrix notation as

αt ∝ ψt � (ΨTαt−1).

In addition to computing the hidden states, the algorithm yields the log likelihood

L = log p(y1:T |θ) =
T∑
t=1

log p(yt|y1:t−1) =
T∑
t=1

logZt.

transformed parameters {
vector[K] logalpha[T];

{ // Forward algorithm log p(z_t = j | y_{1:t})
real accumulator[K];

logalpha[1] = log(pi1) + normal_lpdf(y[1] | mu, sigma);

for (t in 2:T) {
for (j in 1:K) { // j = current (t)

for (i in 1:K) { // i = previous (t-1)
// Murphy (2012) p. 609 eq. 17.48
// belief state + transition prob + local evidence at t

accumulator[i] = logalpha[t-1, i] + log(A[i, j]) + normal_lpdf(y[t] | mu[j], sigma[j]);
}
logalpha[t, j] = log_sum_exp(accumulator);

}
}

} // Forward
}

The Stan code makes evident that the time complexity of the algorithm is O(K2T): there are K×K iterations
within each of the T iterations of the outer loop. Brute-forcing through all possible hidden states KT would
prove prohibitive for realistic problems as time complexity increases exponentially with sequence length
O(KTT).

The implementation is representative of the matrix notation in Murphy (2012 eq. 17.48). The accumulator
variable carries the element-wise operations for all possible previous states which are later combined as
indicated by the matrix multiplication.

Since log domain should be preferred to avoid numerical underflow, multiplications are translated into sums of
logs. Furthermore, we use Stan’s implementation of the linear sums on the log scale to prevent underflow and

6

overflow in the exponentiation (Stan Development Team 2017c, 192). In consequence, logalpha represents
the forward quantity in log scale and needs to be exponentially normalized for interpretability.

generated quantities {
vector[K] alpha[T];

{ // Forward algortihm
for (t in 1:T)

alpha[t] = softmax(logalpha[t]);
} // Forward

}

Since the unnormalized forward probability is sufficient to compute the posterior log density and estimate
the parameters, it should be part of either the model or the transformed parameters blocks. We chose the
latter to keep track of the estimates. We expand on estimation afterward.

1.4.2 Smoothing

A smoother infers the posterior distribution of the hidden states at a given state based on all the observations
or evidence p(zt|y1:T). Although noise and uncertainty are significantly reduced as a result of conditioning
on past and future data, the smoothing process can only be run offline.

Inference can be done by means of the forward-backward algorithm, which also plays an important role in
the Baum-Welch algorithm for learning model parameters (Baum and Eagon 1967; Baum et al. 1970). Let
γt(j) be the desired smoothed posterior marginal,

γt(j) , p(zt = j|y1:T),

αt(j) be the filtered belief state at the step t as defined previously, and βt(j) be the conditional likelihood of
future evidence given that the hidden state at step t is j,

βt(j) , p(yt+1:T |zt = j).

Then, the chain of smoothed marginals can be segregated into the past and the future components by
conditioning on the belief state zt,

γt(j) = αt(j)βt(j)
p(y1:T) ∝ αt(j)βt(j).

The future component can be computed recursively from right to left:

7

βt−1(i) = p(yt:T |zt−1 = i)

=
K∑
j=1

p(zt = j,yt,yt+1:T |zt−1 = i)

=
K∑
j=1

p(yt+1:T |zt = j)p(zt = j,yt|zt−1 = i)

=
K∑
j=1

p(yt+1:T |zt = j)p(yt|zt = j)p(zt = j|zt−1 = i)

=
K∑
j=1

βt(j)ψt(j)Ψ(i, j)

Let βt be a K-sized vector with the conditional likelihood of future evidence given the hidden state at step t.
Then, the backward procedure can be expressed in matrix notation as

βt−1 ∝ Ψ(ψt � βt).

At the last step, the base case is given by

βT (i) = p(yT+1:T |zT = i) = p(∅|zt = i) = 1.

Intuitively, the forward-backward algorithm passes information from left to right and then from right to
left, combining them at each node. A straightforward implementation of the algorithm runs in O(K2T)
time because of the K ×K matrix multiplication at each step. Nonetheless the frequent description as two
subsequent passes, these procedures are not inherently sequential and share no information. As a result, they
could be implemented in parallel.

There is a significant reduction if the transition matrix is sparse. Inference for a left-to-right (upper triangular)
transition matrix, a model where the state index increases or stays the same as time passes, runs in O(TK)
time (Bakis 1976; Jelinek 1976). Additional assumptions about the form of the transition matrix may ease
complexity further, for example decreasing the time to O(TK logK) if ψ(i, j) ∝ exp(−σ2|zi − zj |). Finally,
ad-hoc data pre-processing strategies may help control complexity, for example by pruning nodes with low
conditional probability of occurrence.

functions {
vector normalize(vector x) {

return x / sum(x);
}

}

generated quantities {
vector[K] alpha[T];

vector[K] logbeta[T];
vector[K] loggamma[T];

vector[K] beta[T];
vector[K] gamma[T];

{ // Forward algortihm

8

for (t in 1:T)
alpha[t] = softmax(logalpha[t]);

} // Forward

{ // Backward algorithm log p(y_{t+1:T} | z_t = j)
real accumulator[K];

for (j in 1:K)
logbeta[T, j] = 1;

for (tforward in 0:(T-2)) {
int t;
t = T - tforward;

for (j in 1:K) { // j = previous (t-1)
for (i in 1:K) { // i = next (t)

// Murphy (2012) Eq. 17.58
// backwards t + transition prob + local evidence at t

accumulator[i] = logbeta[t, i] + log(A[j, i]) + normal_lpdf(y[t] | mu[i], sigma[i]);
}

logbeta[t-1, j] = log_sum_exp(accumulator);
}

}

for (t in 1:T)
beta[t] = softmax(logbeta[t]);

} // Backward

{ // forward-backward algorithm log p(z_t = j | y_{1:T})
for(t in 1:T) {

loggamma[t] = alpha[t] .* beta[t];
}

for(t in 1:T)
gamma[t] = normalize(loggamma[t]);

} // forward-backward
}

The reader should not be deceived by the similarity to the code shown in the filtering section. Note that the
indices in the log transition matrix are inverted and the evidence is now computed for the next state. We
need to invert the time index as backward ranges are not available in Stan.

The forward-backward algorithm was designed to exploit via recursion the conditional independencies in the
HMM. First, the posterior marginal probability of the latent states at a given time step is broken down into
two quantities: the past and the future components. Second, taking advantage of the Markov properties,
each of the two are further broken down into simpler pieces via conditioning and marginalizing, thus creating
an efficient predict-update cycle.

This strategy makes otherwise unfeasible calculations possible. Consider for example a time series with
T = 100 observations and K = 5 hidden states. Summing the joint probability over all possible state
sequences would involve 2× 100× 5100 ≈ 1072 computations, while the forward and backward passes only take
3, 000 each. Moreover, one pass may be avoided depending on the goal of the data analysis. Summing the
forward probabilities at the last time step is enough to compute the likelihood, and the backwards recursion
would be only needed if the posterior probabilities of the states were also required.

9

1.4.3 MAP: Viterbi

It is also of interest to compute the most probable state sequence or path,

z∗ = argmax
z1:T

p(z1:T |y1:T).

The jointly most probable sequence of states can be inferred via maximum a posteriori (MAP) estimation.
Note that the jointly most probable sequence is not necessarily the same as the sequence of marginally most
probable states given by the maximizer of the posterior marginals (MPM),

ẑ = (argmax
z1

p(z1|y1:T), . . . , argmax
zT

p(zT |y1:T)),

which maximizes the expected number of correct individual states.

The MAP estimate is always globally consistent: while locally a state may be most probable at a given step,
the Viterbi or max-sum algorithm decodes the most likely single plausible path (Viterbi 1967). Furthermore,
the MPM sequence may have zero joint probability if it includes two successive states that, while being
individually the most probable, are connected in the transition matrix by a zero. On the other hand, MPM
may be considered more robust since the state at each step is estimated by averaging over its neighbors rather
than conditioning on a specific value of them.

The Viterbi applies the max-sum algorithm in a forward fashion plus a traceback procedure to recover the
most probable path. In simple terms, once the most probable state zt is estimated, the procedure conditions
the previous states on it. Let δt(j) be the probability of arriving to the state j at step t given the most
probable path was taken,

δt(j) , max
z1,...,zt−1

p(z1:t−1, zt = j|y1:t).

The most probable path to state j at step t consists of the most probable path to some other state i at point
t− 1, followed by a transition from i to j,

δt(j) = max
i
δt−1(i) ψ(i, j) ψt(j).

Additionally, the most likely previous state on the most probable path to j at step t is given by

at(j) = argmax
i
δt−1(i) ψ(i, j) ψt(j).

By initializing with δ1 = πjφ1(j) and terminating with the most probable final state z∗T = argmaxi δT (i), the
most probable sequence of states is estimated using the traceback,

z∗t = at+1(z∗t+1).

It is advisable to work in the log domain to avoid numerical underflow,

δt(j) , max
z1:t−1

log p(z1:t−1, zt = j|y1:t) = max
i

log δt−1(i) + logψ(i, j) + logψt(j).

As with the backward-forward algorithm, the time complexity of Viterbi is O(K2T) and the space complexity
is O(KT). If the transition matrix has the form ψ(i, j) ∝ exp(−σ2||zi−zj ||2), implementation runs in O(TK)
time.

10

generated quantities {
int<lower=1, upper=K> zstar[T];
real logp_zstar;

{ // Viterbi algorithm
int bpointer[T, K]; // backpointer to the most likely previous state on the most probable path
real delta[T, K]; // max prob for the sequence up to t

// that ends with an emission from state k

for (j in 1:K)
delta[1, K] = normal_lpdf(y[1] | mu[j], sigma[j]);

for (t in 2:T) {
for (j in 1:K) { // j = current (t)

delta[t, j] = negative_infinity();
for (i in 1:K) { // i = previous (t-1)

real logp;
logp = delta[t-1, i] + log(A[i, j]) + normal_lpdf(y[t] | mu[j], sigma[j]);
if (logp > delta[t, j]) {

bpointer[t, j] = i;
delta[t, j] = logp;

}
}

}
}

logp_zstar = max(delta[T]);

for (j in 1:K)
if (delta[T, j] == logp_zstar)

zstar[T] = j;

for (t in 1:(T - 1)) {
zstar[T - t] = bpointer[T - t + 1, zstar[T - t + 1]];

}
}

}

The variable delta is a straightforward implementation of the corresponding equation. bpointer is the
traceback needed to compute the most probable sequence of states after the most probably final state zstar
is computed.

1.5 Parameter estimation

The model likelihood can be derived from the definition of the quantity γt(j): given that its sum over all
possible values of the latent variable must equal one, the log likelihood at time index t becomes

Lt =
K∑
i=1

αt(i)βt(i).

The last step T has two convenient characteristics. First, the recurrent nature of the forward probability
implies that the last iteration retains the information of all the intermediate state probabilities. Second, the
base case for the backwards quantity is βT (i) = 1. Consequently, the log likelihood reduces to

11

LT ∝
K∑
i=1

αT (i).

model {
target += log_sum_exp(logalpha[T]); // Note: update based only on last logalpha

}

As we expect high multimodality in the posterior density, we use a clustering algorithm to feed the sampler
with initialization values for the location and scale parameters. Although K-means is not a good choice for
this data because it does not consider the time-dependent nature of the data, it provides an educated guess
sufficient for initialization.
hmm_init <- function(K, y) {

clasif <- kmeans(y, K)
init.mu <- by(y, clasif$cluster, mean)
init.sigma <- by(y, clasif$cluster, sd)
init.order <- order(init.mu)

list(
mu = init.mu[init.order],
sigma = init.sigma[init.order]

)
}

hmm_fit <- function(K, y) {
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

stan.model = 'stan/hmm_gaussian.stan'
stan.data = list(

T = length(y),
K = K,
y = y

)

stan(file = stan.model,
data = stan.data, verbose = T,
iter = 400, warmup = 200,
thin = 1, chains = 1,
cores = 1, seed = 900,
init = function(){hmm_init(K, y)})

}

1.6 Worked example

We draw one sample of length T = 500 from a data generating process with K = 3 latent states. We fit the
model using the Stan code and the initialization methodology introduced previously.
set.seed(900)
K <- 3
T_length <- 500
dataset <- hmm_generate(K, T_length)
fit <- hmm_fit(K, dataset$y)

12

##
TRANSLATING MODEL 'hmm_gaussian' FROM Stan CODE TO C++ CODE NOW.
successful in parsing the Stan model 'hmm_gaussian'.
##
CHECKING DATA AND PREPROCESSING FOR MODEL 'hmm_gaussian' NOW.
##
COMPILING MODEL 'hmm_gaussian' NOW.
##
STARTING SAMPLER FOR MODEL 'hmm_gaussian' NOW.
##
SAMPLING FOR MODEL 'hmm_gaussian' NOW (CHAIN 1).
##
Gradient evaluation took 0.001 seconds
1000 transitions using 10 leapfrog steps per transition would take 10 seconds.
Adjust your expectations accordingly!
##
##
Iteration: 1 / 400 [0%] (Warmup)
Iteration: 40 / 400 [10%] (Warmup)
Iteration: 80 / 400 [20%] (Warmup)
Iteration: 120 / 400 [30%] (Warmup)
Iteration: 160 / 400 [40%] (Warmup)
Iteration: 200 / 400 [50%] (Warmup)
Iteration: 201 / 400 [50%] (Sampling)
Iteration: 240 / 400 [60%] (Sampling)
Iteration: 280 / 400 [70%] (Sampling)
Iteration: 320 / 400 [80%] (Sampling)
Iteration: 360 / 400 [90%] (Sampling)
Iteration: 400 / 400 [100%] (Sampling)
##
Elapsed Time: 27.28 seconds (Warm-up)
3.58 seconds (Sampling)
30.86 seconds (Total)

The estimates are extremely efficient as expected when dealing with generated data. The Markov Chain
are well behaved as diagnosed by the low Monte Carlo standard error, the high effective sample size and
the near-one shrink factor of Gelman and Rubin (1992). Although not shown, further diagnostics confirm
satisfactory mixing, convergence and the absence of divergences. Point estimates and posterior intervals are
provided by rstan’s summary function.

Table 2: Estimated parameters and hidden quantities. MCSE =
Monte Carlo Standard Error, SE = Standard Error, ESS = Effective
Sample Size.

True Mean MCSE SE q10% q50% q90% ESS R̂

pi1[1] 0.14 0.35 0.02 0.24 0.05 0.31 0.69 200.00 1.00
pi1[2] 0.38 0.29 0.02 0.22 0.04 0.26 0.61 200.00 1.01
pi1[3] 0.47 0.36 0.02 0.22 0.08 0.35 0.66 200.00 1.00
A[1,1] 0.03 0.02 0.00 0.02 0.00 0.02 0.05 198.89 1.00
A[1,2] 0.54 0.53 0.00 0.05 0.47 0.53 0.59 200.00 1.00
A[1,3] 0.43 0.45 0.00 0.05 0.38 0.45 0.50 200.00 1.00
A[2,1] 0.56 0.57 0.00 0.04 0.52 0.57 0.63 200.00 1.00
A[2,2] 0.31 0.30 0.00 0.04 0.24 0.30 0.35 200.00 1.00
A[2,3] 0.13 0.13 0.00 0.03 0.10 0.13 0.17 200.00 1.00

13

True Mean MCSE SE q10% q50% q90% ESS R̂

A[3,1] 0.20 0.17 0.00 0.05 0.12 0.17 0.24 200.00 1.00
A[3,2] 0.72 0.79 0.00 0.05 0.72 0.80 0.85 123.20 1.00
A[3,3] 0.07 0.03 0.00 0.02 0.01 0.03 0.07 78.75 1.00
mu[1] 8.94 9.16 0.01 0.14 8.98 9.15 9.34 200.00 1.00
mu[2] 18.73 18.64 0.03 0.29 18.29 18.63 18.99 107.77 1.00
mu[3] 29.23 29.52 0.01 0.17 29.30 29.52 29.76 200.00 1.00
sigma[1] 0.19 1.80 0.01 0.12 1.65 1.79 1.97 200.00 1.01
sigma[2] 3.65 3.98 0.02 0.24 3.67 3.97 4.30 100.08 1.01
sigma[3] 1.69 1.75 0.01 0.15 1.57 1.74 1.94 200.00 1.00

We extract the samples for some quantities of interest, namely the filtered probabilities vector αt, the
smoothed probability vector γt and the most probable hidden path z∗. As an informal assessment that our
software recover the hidden states correctly, we observe that the filtered probability, the smoothed probability
and the most likely path are all reasonable accurate to the true values. As expected, because we used an
ordering constraint to break symmetry, the MAP estimate is able to successfully recover the (simulated)
hidden path without label switching.
alpha <- extract(fit, pars = 'alpha')[[1]]
gamma <- extract(fit, pars = 'gamma')[[1]]

alpha_med <- apply(alpha, c(2, 3), function(x) { quantile(x, c(0.50)) })
alpha_hard <- apply(alpha_med, 1, which.max)

table(true = dataset$z, estimated = alpha_hard)

estimated
true 1 2 3
1 155 0 0
2 6 226 1
3 0 5 107
zstar <- extract(fit, pars = 'zstar')[[1]]
plot_statepath(zstar, dataset$z)

14

0 100 200 300 400 500

1.
0

1.
5

2.
0

2.
5

3.
0

Sequence of hidden states

t

ẑ t

Most probable path State 1 State 2 State 3

table(true = dataset$z, estimated = apply(zstar, 2, median))

estimated
true 1 2 3
1 154 1 0
2 4 227 2
3 0 5 107

Finally, we plot the observed series colored according to the jointly most likely state. We identify an
insignificant quantity of misclassifications product of the stochastic nature of our software.
plot_outputvit(x = dataset$y,

z = dataset$z,
zstar = zstar,
main = "Most probable path")

15

0 100 200 300 400 500

10
15

20
25

30
35

Most probable path

t

O
ut

pu
t x

Observation State 1 State 2 State 3 Classification error

2 The Input-Output Hidden Markov Model

The IOHMM is an architecture proposed by Bengio and Frasconi (1994) to map input sequences, sometimes
called the control signal, to output sequences. It is a probabilistic framework that can deal with general
sequence processing tasks such as production, classification and prediction. The main difference from classical
HMM, which are unsupervised learners, is the capability to learn the output sequence itself instead of the
distribution of the output sequence.

2.1 Definitions

As with HMM, IOHMM involves two interconnected models,

zt = f(zt−1,ut)
yt = g(zt,ut).

The first line corresponds to the state model, which consists of discrete-time, discrete-state hidden states
zt ∈ {1, . . . ,K} whose transition depends on the previous hidden state zt−1 and the input vector ut ∈ RM .
Additionally, the observation model is governed by g(zt,ut), where yt ∈ RR is the vector of observations,
emissions or output. The corresponding joint distribution is

p(z1:T ,y1:T |ut).

In the proposed parameterization with continuous inputs and outputs, the state model involves a multinomial
regression whose parameters depend on the previous state taking the value i,

16

p(zt|yt,ut, zt−1 = i) = softmax−1(utwi),

and the observation model is built upon a linear regression with Gaussian error and parameters depending on
the current state taking the value j,

p(yt|ut, zt = j) = N (utbj ,Σj)

IOHMM adapts the logic of HMM to allow for input and output vectors, retaining its fully probabilistic
quality. Hidden states are assumed to follow a multinomial distribution that depends on the input sequence.
The transition probabilities Ψt(i, j) = p(zt = j|zt−1 = i,ut), which govern the state dynamics, are driven by
the control signal as well.

As for the output sequence, the local evidence at time t now becomes ψt(j) = p(yt|zt = j, ηt), where
ηt = E 〈yt|zt,ut〉 can be interpreted as the expected location parameter for the probability distribution of
the emission yt conditional on the input vector ut and the hidden state zt.

The actual form of the emission density p(yt, ηt) can be discrete or continuous. In case of sequence classification
or symbolic mutually exclusive emissions, it is possible to set up the multinomial distribution by running the
softmax function over the estimated outputs of all possible states. In this case, we approximate continuous
observations with the Gaussian density, the target is estimated as a linear combination of these outputs.

The adaptation of the data and parameters blocks is straightforward: we add the number of input variables
M, the array of input vectors u, the regressors b and the residual standard deviation sigma.

data {
int<lower=1> T; // number of observations (length)
int<lower=1> K; // number of hidden states
int<lower=1> M; // size of the input vector

real y[T]; // output (scalar so far)
vector[M] u[T]; // input vectors

}

parameters {
// Discrete state model
simplex[K] pi1; // initial state probabilities
vector[M] w[K]; // state regressors

// Continuous observation model
vector[M] b[K]; // mean regressors
real<lower=0> sigma[K]; // residual standard deviations

}

2.2 Inference

2.2.1 Filtering

The filtered marginals are computed recursively by adjusting the forward algorithm to consider the input
sequence,

17

αt(j) , p(zt = j|y1:t,u1:t)

=
K∑
i=1

p(zt = j|zt−1 = i,yt,ut)p(zt−1 = i|y1:t−1,u1:t−1)

=
K∑
i=1

p(yt|zt = j,ut)p(zt = j|zt−1 = i,ut)p(zt−1 = i|y1:t−1,u1:t−1)

= ψt(j)
K∑
i=1

Ψt(i, j)αt−1(i).

The implementation in Stan requires one modification: the time-dependent transition probability matrix
is now computed as the linear combination of the input variables and the parameters of the multinomial
regression that drives the latent process.

transformed parameters {
vector[K] logalpha[T];

vector[K] unA[T];
vector[K] A[T];

vector[K] logoblik[T];

{ // Transition probability matrix p(z_t = j | z_{t-1} = i, u)
unA[1] = pi1; // Filler
A[1] = pi1; // Filler
for (t in 2:T) {

for (j in 1:K) { // j = current (t)
unA[t][j] = u[t]' * w[j];

}
A[t] = softmax(unA[t]);

}
}

{ // Evidence (observation likelihood)
for(t in 1:T) {

for(j in 1:K) {
logoblik[t][j] = normal_lpdf(y[t] | mu[j], sigma[j]);

}
}

}

{ // Forward algorithm log p(z_t = j | y_{1:t})
real accumulator[K];

for(j in 1:K)
logalpha[1][j] = log(pi1[j]) + logoblik[1][j];

for (t in 2:T) {
for (j in 1:K) { // j = current (t)

for (i in 1:K) { // i = previous (t-1)
// Murphy (2012) Eq. 17.48
// belief state + transition prob + local evidence at t

18

accumulator[i] = logalpha[t-1, i] + log(A[t][i]) + logoblik[t][j];
}
logalpha[t, j] = log_sum_exp(accumulator);

}
}

} // Forward
}

2.2.2 Smoothing

A smoother infers the posterior distribution of the hidden states at a given step based on all the observations
or evidence,

γt(j) , p(zt = j|y1:T ,u1:T)
∝ αt(j)βt(j),

where

βt−1(i) , p(yt:T |zt−1 = i,ut:T).

Similarly, inference about the smoothed posterior marginal requires the adaptation of the forward-backward
algorithm to consider the input sequence in both components αt(j) and βt(j). The latter now becomes

βt−1(i) , p(yt:T |zt−1 = i,ut:T)

=
K∑
j=1

ψt(j)Ψt(i, j)βt(j).

Once we have adjusted the transition probability matrix, the Stan code for the forward-backward algorithm
need no further modification.

2.2.3 MAP: Viterbi

The Viterbi algorithm described above can be applied to the IOHMM without modification.

2.3 Parameter estimation

The parameters of the models are θ = (π1, θh, θo), where π1 is the initial state distribution, θh are the
parameters of the hidden model and θo are the parameters of the state-conditional density function p(yt|zt =
j,ut). State transition is characterized by a multinomial regression with parameters wk for k ∈ {1, . . . ,K},
while emissions are modeled by a linear regression with Gaussian error and parameters bk and Σk for
k ∈ {1, . . . ,K}.

Estimation can be run under both the maximum likelihood and Bayesian frameworks. Although it is a
straightforward procedure when the data is fully observed, in practice the latent states z1:T are hidden. The
most common approach is the application of the EM algorithm to find either the maximum likelihood or the
maximum a posteriori estimates. Bengio and Frasconi (1994) proposes a straightforward modification of the

19

EM algorithm. The application of sigmoidal functions, for example the logistic or softmax transforms for the
hidden transition model, requires numeric optimization via gradient ascent or similar methods for the M step.
In this work, we exploit Stan’s capabilities to produce a sampler that explores the posterior density of the
model parameters.

2.4 A simulation example

2.4.1 Numerical stability for the softmax function

Before we begin, we pause for a minor digression on numerical stability.

The softmax function, or normalized exponential function, can suffer from over or underflow in the exponentials.
A naive implementation may fail:
x <- 10^(1:5)
exp(x) / sum(exp(x))

[1] 0 0 NaN NaN NaN

A well-known, safer implementation exploits the fact that softmax is location invariant, ie softmax(y) =
softmax(y + c) for any constant c. Subtracting the maximum value produces a new vector with non-positive
entries, ruling out overflows, and at least one zero element, guaranteeing at least one significant term in the
denominator.
logsumexp <- function(x) {

y = max(x)
y + log(sum(exp(x - y)))

}

softmax <- function(x) {
exp(x - logsumexp(x))

}

softmax(x)

[1] 0 0 0 0 1

This is already taken care in Stan (Stan Development Team 2017c, 478).

2.4.2 Simulation Example

We first adapt the R routine used to simulate data from our new generative model. The arguments are the
sequence length T , the number of discrete hidden states K, the input matrix u, the initial state distribution
vector π1, a matrix with the parameters of the multinomial regression that rules the hidden states dynamics
w, the name of a function drawing samples from the observation distribution and its arguments.

The initial hidden state is drawn from a multinomial distribution with one trial and event probabilities given
by the initial state probability vector π1. The latent states for each of the following steps t ∈ {2, . . . , T}
are generated from a multinomial regression with vector parameters wk, one set per possible hidden state
k ∈ {1, . . . ,K}, and covariates ut. The hidden states are subsequently sampled based on these transition
probabilities.

The observation at each step may generate from a Gaussian with parameters µk and σk, one set per possible
hidden state.

20

iohmm_generate <- function(T) {
1. Parameters
K <- 3
M <- 4
u <- matrix(rnorm(T * M), nrow = T, ncol = M, byrow = TRUE)
w <- matrix(

c(1.2, 0.5, 0.3, 0.1, 0.5, 1.2, 0.3, 0.1, 0.5, 0.1, 1.2, 0.1),
nrow = K, ncol = M, byrow = TRUE)

b <- matrix(
c(5.0, 6.0, 7.0, 0.5, 1.0, 5.0, 0.1, -0.5, 0.1, -1.0, -5.0, 0.2),
nrow = K, ncol = M, byrow = TRUE)

sigma <- c(0.2, 1.0, 2.5)
pi1 <- c(0.4, 0.2, 0.4)

p.mat <- matrix(0, nrow = T, ncol = K)
p.mat[1,] <- pi1

2. Hidden path
z <- vector("numeric", T)
z[1] <- sample(x = 1:K, size = 1, replace = FALSE, prob = pi1)
for (t in 2:T) {

p.mat[t,] <- softmax(sapply(1:K, function(j) {u[t,] %*% w[j,]}))
z[t] <- sample(x = 1:K, size = 1, replace = FALSE, prob = p.mat[t,])

}

3. Observations
y <- vector("numeric", T)
for (t in 1:T) {

y[t] <- rnorm(1, u[t,] %*% b[z[t],], sigma[z[t]])
}

list(
u = u,
z = z,
y = y,
theta = list(pi1 = pi1, w = w,

b = b, sigma = sigma, p.mat = p.mat)
)

}

We draw one sample of length T = 500 from a data generating process with K = 3 latent states and run an
exploratory analysis of the observed quantities.
set.seed(900)
K <- 3
T_length <- 500
dataset <- iohmm_generate(T_length)

plot_inputoutput(x = dataset$y, u = dataset$u, z = dataset$z)

21

Time t

O
ut

pu
t x

−
20

−
10

0
10

20

Time t

In
pu

t u

0 100 200 300 400 500

−
3

−
2

−
1

0
1

2
3

"Input" ~ u[1] "Input" ~ u[2] "Input" ~ u[3] "Input" ~ u[4]

−3 −2 −1 0 1 2 3

"Input" ~ u[1]

O
ut

pu
t x

−
20

−
10

0
10

20

−3 −2 −1 0 1 2 3

"Input" ~ u[2]

O
ut

pu
t x

−3 −2 −1 0 1 2 3

"Input" ~ u[3]

O
ut

pu
t x

−3 −2 −1 0 1 2 3

"Input" ~ u[4]

O
ut

pu
t x

−
20

−
10

0
10

20

Input−Output relationship

Hidden state 1 Hidden state 2 Hidden state 3

We observe how the chosen values for the parameters affect the generated data. For example, the relationship
between the third input u3 and the output yt is positive, indifferent and negative for the hidden states
K = 1, 2, 3 respectively. The true slopes are 7, 0.1 and -5.
plot_inputprob(u = dataset$u, p.mat = dataset$theta$p.mat, z = dataset$z)

22

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[1]

P
ro

b
of

 s
ta

te
 1

 p
(z

t
=

1)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[2]

P
ro

b
of

 s
ta

te
 1

 p
(z

t
=

1)
−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[3]

P
ro

b
of

 s
ta

te
 1

 p
(z

t
=

1)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[4]

P
ro

b
of

 s
ta

te
 1

 p
(z

t
=

1)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[1]

P
ro

b
of

 s
ta

te
 2

 p
(z

t
=

2)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[2]

P
ro

b
of

 s
ta

te
 2

 p
(z

t
=

2)

−3 −2 −1 0 1 2 3
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

"Input" ~ u[3]

P
ro

b
of

 s
ta

te
 2

 p
(z

t
=

2)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[4]

P
ro

b
of

 s
ta

te
 2

 p
(z

t
=

2)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[1]

P
ro

b
of

 s
ta

te
 3

 p
(z

t
=

3)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[2]

P
ro

b
of

 s
ta

te
 3

 p
(z

t
=

3)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[3]

P
ro

b
of

 s
ta

te
 3

 p
(z

t
=

3)

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

"Input" ~ u[4]

P
ro

b
of

 s
ta

te
 3

 p
(z

t
=

3)

Hidden state 1 Hidden state 2 Hidden state 3

Input−State probability relationship

We then analyse the relationship between the input and the state probabilities, which are usually hidden in
applications with real data. The pairs {u1, p(zt = 1)}, {u2, p(zt = 2)} and {u3, p(zt = 3)} show the strongest
relationships because of values of true regression parameters: those inputs take the largest weight in each
state, namely w11 = 1.2, w22 = 1.2 and w33 = 1.2.

We run the software to draw samples from the posterior density of model parameters and other hidden
quantities.
iohmm_fit <- function(K, u, y) {

rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

stan.model = 'stan/iohmm_reg.stan'
stan.data = list(

T = nrow(u),
K = K,
M = ncol(u),
u = as.array(u),

23

y = y
)

stan(file = stan.model,
data = stan.data, verbose = T,
iter = 400, warmup = 200,
thin = 1, chains = 1,
cores = 1, seed = 900)

}

fit <- iohmm_fit(K, dataset$u, dataset$y)

##
TRANSLATING MODEL 'iohmm_reg' FROM Stan CODE TO C++ CODE NOW.
successful in parsing the Stan model 'iohmm_reg'.
##
CHECKING DATA AND PREPROCESSING FOR MODEL 'iohmm_reg' NOW.
##
COMPILING MODEL 'iohmm_reg' NOW.
##
STARTING SAMPLER FOR MODEL 'iohmm_reg' NOW.
##
SAMPLING FOR MODEL 'iohmm_reg' NOW (CHAIN 1).
##
Gradient evaluation took 0.002 seconds
1000 transitions using 10 leapfrog steps per transition would take 20 seconds.
Adjust your expectations accordingly!
##
##
Iteration: 1 / 400 [0%] (Warmup)
Iteration: 40 / 400 [10%] (Warmup)
Iteration: 80 / 400 [20%] (Warmup)
Iteration: 120 / 400 [30%] (Warmup)
Iteration: 160 / 400 [40%] (Warmup)
Iteration: 200 / 400 [50%] (Warmup)
Iteration: 201 / 400 [50%] (Sampling)
Iteration: 240 / 400 [60%] (Sampling)
Iteration: 280 / 400 [70%] (Sampling)
Iteration: 320 / 400 [80%] (Sampling)
Iteration: 360 / 400 [90%] (Sampling)
Iteration: 400 / 400 [100%] (Sampling)
##
Elapsed Time: 113.979 seconds (Warm-up)
76.33 seconds (Sampling)
190.309 seconds (Total)

We rely on several diagnostic statistics and plots provided by rstan (Stan Development Team 2017a) and
shinystan (Stan Development Team 2017b) to assess mixing, convergence and the absence of divergences.
Label switching hinders the comparison between true and observed parameters.

24

Table 3: Estimated parameters and hidden quantities. MCSE =
Monte Carlo Standard Error, SE = Standard Error, ESS = Effective
Sample Size.

True Mean MCSE SE q10% q50% q90% ESS R̂

pi1[1] 0.4 0.27 0.01 0.20 0.04 0.24 0.56 200.00 1.00
pi1[2] 0.2 0.25 0.01 0.19 0.05 0.20 0.56 200.00 1.00
pi1[3] 0.4 0.48 0.02 0.22 0.19 0.48 0.76 200.00 1.00
w[1,1] 1.2 -0.33 0.25 2.66 -3.81 -0.56 3.15 113.42 1.00
w[1,2] 0.5 -0.06 0.24 3.03 -4.43 0.06 3.73 158.28 1.00
w[1,3] 0.3 0.06 0.20 2.78 -3.48 0.08 3.54 184.68 1.00
w[1,4] 0.1 -0.23 0.26 3.09 -4.04 -0.16 3.94 140.91 1.00
w[2,1] 0.5 -0.34 0.25 2.67 -3.76 -0.53 3.22 113.70 1.00
w[2,2] 1.2 -0.15 0.24 3.03 -4.39 -0.05 3.67 158.29 1.00
w[2,3] 0.3 0.06 0.20 2.76 -3.54 0.13 3.70 185.29 1.00
w[2,4] 0.1 -0.10 0.26 3.10 -3.98 -0.03 4.19 141.38 1.00
w[3,1] 0.5 -0.54 0.25 2.66 -3.92 -0.68 2.96 115.20 1.00
w[3,2] 0.1 -0.10 0.24 3.03 -4.43 -0.07 3.78 158.11 1.00
w[3,3] 1.2 0.05 0.20 2.76 -3.48 0.19 3.60 187.16 1.00
w[3,4] 0.1 -0.17 0.26 3.08 -3.99 -0.07 3.96 141.51 1.00
b[1,1] 5.0 -0.05 0.01 0.19 -0.31 -0.05 0.18 200.00 1.01
b[1,2] 1.0 -1.08 0.01 0.18 -1.32 -1.09 -0.84 200.00 1.00
b[1,3] 0.1 -4.93 0.01 0.20 -5.17 -4.94 -4.67 200.00 1.00
b[1,4] 6.0 0.15 0.02 0.21 -0.13 0.15 0.44 200.00 0.99
b[2,1] 5.0 4.98 0.00 0.02 4.96 4.98 5.01 200.00 1.00
b[2,2] -1.0 5.99 0.00 0.02 5.96 5.99 6.01 200.00 1.00
b[2,3] 7.0 7.00 0.00 0.02 6.98 7.00 7.02 200.00 1.00
b[2,4] 0.1 0.49 0.00 0.02 0.47 0.49 0.52 200.00 1.00
b[3,1] -5.0 0.98 0.01 0.10 0.85 0.98 1.12 200.00 1.00
b[3,2] 0.5 5.00 0.01 0.09 4.88 5.00 5.12 200.00 1.00
b[3,3] -0.5 0.09 0.01 0.08 -0.02 0.09 0.20 200.00 1.00
b[3,4] 0.2 -0.61 0.01 0.09 -0.73 -0.61 -0.50 200.00 1.00
sigma[1] 0.2 2.59 0.01 0.14 2.42 2.59 2.78 200.00 1.00
sigma[2] 1.0 0.20 0.00 0.01 0.18 0.20 0.22 200.00 1.00
sigma[3] 2.5 1.07 0.00 0.07 0.99 1.06 1.16 200.00 1.00

While mixing and convergence is extremely efficient, as expected when dealing with generated data, we note
that the regression parameters for the latent states are the worst performers. The smaller effective size
translates into higher Monte Carlo standard error and broader posterior intervals. One possible reason is
that softmax is invariant to change in location, thus the parameters of a multinomial regression do not have
a natural center and become harder to estimate.

We assess that our software recover the hidden states correctly. Due to label switching, the states generated
under the labels 1 through 3 were recovered in a different order. In consequence, we decide to relabel the
observations based on the best fit. This would not prove to be a problem with real data as the hidden states
are never observed.
Relabeling (ugly hack edition) ---
alpha <- extract(fit, pars = 'alpha')[[1]]
dataset$zrelab <- rep(0, T_length)

hard <- sapply(1:T_length, function(t, med) {
which.max(med[t,])

}, med = apply(alpha, c(2, 3),

25

function(x) {
quantile(x, c(0.50)) }))

tab <- table(hard = hard, original = dataset$z)

for (k in 1:K) {
dataset$zrelab[which(dataset$z == k)] <- which.max(tab[, k])

}

table(new = dataset$zrelab, original = dataset$z)

original
new 1 2 3
1 0 0 183
2 152 0 0
3 0 165 0

The confusion matrix makes evident that, under ideal conditions, the sampler works as intended.

Table 4: Hard classification.

Real 1 Real 2 Real 3
1 155 1 6
2 6 151 7
3 22 0 152

Similarly, the Viterbi algorithm recovers the expected most probably hidden state.
zstar <- extract(fit, pars = 'zstar')[[1]]
plot_statepath(zstar, dataset$zrelab)

26

0 100 200 300 400 500

1.
0

1.
5

2.
0

2.
5

3.
0

Sequence of hidden states

t

ẑ t

Most probable path State 1 State 2 State 3

table(true = dataset$z, estimated = apply(zstar, 2, median))

estimated
true 1 2 3
1 0 151 1
2 4 8 153
3 155 6 22

3 A Markov Switching GARCH Model

While HMMs are useful for modeling certain phenomena directly, their utility is significantly increased
by embedding them within larger models. In this section, we embed an HMM within a commonly used
econometric model and apply it to stock market returns. We provide code for the forward algorithm for this
model. The other algorithms discussed above can be applied to this model with minor modifications.

Many financial time series exhibit so-called “volatility clustering”; that is, periods of significant activity
tend to occur closely together, suggesting that there is some form of short-term memory to the volatility
(standard deviation of returns). Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models
are commonly used to capture this phenomenon and have been widely studied in the econometrics literature
(Bollerslev 1986; Bollerslev 2010). No less important is the phenomenon of “regime-switching” - the observation
that financial markets go through alternating periods of low-volatility booms and high-volatility busts. The
Markov Switching GARCH (MS-GARCH) model of Hass et al. (2004b; 2004a) uses a HMM to switch between
two latent GARCH processes. In an extensive empirical comparison, Ardia et al. report that Bayesian
estimation significantly improves the performance of the MS-GARCH over the more common maximum
likelihood estimate (Ardia et al. 2017). We show how this model can be easily and efficiently estimated using
Stan.

The standard GARCH(1, 1) model is described in the Stan Manual (Stan Development Team 2017c, Section
10.2). Under the model, the return at each date yt is drawn independently from a normal distribution with

27

mean µ, which we fix to be zero, and a time-varying standard deviation σt which evolves according to

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1

p(yt) = N (0, σ2
t).

In the MS-GARCH model, we have two parallel GARCH processes (with different parameters) and the
standard deviation of the return is drawn according to one of the two processes as determined by an HMM.

(σ(1)
t)2 = α

(1)
0 + α

(1)
1 y2

t−1 + β
(1)
1 σ2

t−1

(σ(2)
t)2 = α

(2)
0 + α

(2)
1 y2

t−1 + β
(2)
1 σ2

t−1

p(zt|zt−1 = k) = Categorical(pk)

p(yt|zt = k) = N (yt|0, (σ(k)
t)2)

The implementation is a relatively straight-forward combination of the standard HMM discussed above and the
GARCH model from the Stan Manual. To ensure our model is well-identified, we use the positive_ordered
type for the baseline volatilities α(1)

0 , α
(2)
0 . We use weak priors on the GARCH coefficients as well as hard

constraints on (α(i)
1 , β

(i)
1) to ensure the resulting model is stationary.

We fit this to S&P 500 data from the last 5 years:

12−01 12−04 12−07 12−10 13−01 13−04 13−07 13−10 14−01 14−04 14−07 14−10 15−01 15−04 15−07 15−10 16−01 16−04 16−07 16−10 17−01 17−04 17−07 17−10 17−12

S&P 500 Daily Returns 2012−01−04 / 2017−12−29

−0.04

−0.02

 0.00

 0.02

−0.04

−0.02

 0.00

 0.02

msgarch_fit <- function(y) {
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

stan.model = 'stan/hmm_garch.stan'

y <- as.vector(coredata(y));
stan.data = list(

T = length(y),
y = y

)

28

stan(file = stan.model,
data = stan.data, verbose = T,
iter = 1000, warmup = 500,
thin = 1, chains = 1,
cores = 1, seed = 900)

}

fit <- msgarch_fit(SPY.R)

Examining the fit, e.g. in ShinyStan (Stan Development Team 2017b), we see that Stan samples efficiently
from this model, with all R̂-statistics below 1.1 and high neff/n ratios. From here, we are able to perform
posterior inference, e.g., examining posterior means of the conditional volatilities from the two GARCH
processes,

12−01 12−04 12−07 12−10 13−01 13−04 13−07 13−10 14−01 14−04 14−07 14−10 15−01 15−04 15−07 15−10 16−01 16−04 16−07 16−10 17−01 17−04 17−07 17−10 17−12

Posterior Means of Instantaneous Variances 2012−01−04 / 2017−12−29

0.005

0.010

0.015

0.020

0.025

0.030

0.005

0.010

0.015

0.020

0.025

0.030

or the posterior probability of being in the low-volatility state on each date:

12−01 12−04 12−07 12−10 13−01 13−04 13−07 13−10 14−01 14−04 14−07 14−10 15−01 15−04 15−07 15−10 16−01 16−04 16−07 16−10 17−01 17−04 17−07 17−10 17−12

Posterior Probability of Low−Vol State 2012−01−04 / 2017−12−29

0.2

0.4

0.6

0.2

0.4

0.6

29

The model suggests that most dates are indeed in the low-volatility regime, as we would expect.3

4 Acknowledgements

We thank the members of the Stan Development Team for developing Stan and for freely sharing their
passion and expertise. In particular, we would like to thank Aaron Goodman, Ben Bales, and Bob Carpenter
for their active participation in the discussions held in Stan forums for HMM with constraints and HHMM.
Although not strictly related, the discussion remains very valuable for the current tutorial.

We acknowledge the Google Summer Of Code (GSOC) program for funding. This tutorial builds on top of
our project: Bayesian Hierarchical Hidden Markov Models applied to financial time series.

5 Original Computing Environment

Warning in readLines(makevars_file): incomplete final line found on 'C:
\Users\Bebop/.R/Makevars'

CXXFLAGS=-O3 -Wno-unused-variable -Wno-unused-function

Session info ---

setting value
version R version 3.4.1 (2017-06-30)
system x86_64, mingw32
ui RTerm
language (EN)
collate Spanish_Argentina.1252
tz America/Buenos_Aires
date 2018-01-31

Packages ---

package * version date source
BH 1.65.0-1 2017-08-24 CRAN (R 3.4.1)
colorspace 1.3-2 2016-12-14 CRAN (R 3.4.1)
dichromat 2.0-0 2013-01-24 CRAN (R 3.4.1)
digest 0.6.12 2017-01-27 CRAN (R 3.4.1)
ggplot2 * 2.2.1 2016-12-30 CRAN (R 3.4.1)
graphics * 3.4.1 2017-06-30 local
grDevices * 3.4.1 2017-06-30 local
grid 3.4.1 2017-06-30 local
gridExtra 2.3 2017-09-09 CRAN (R 3.4.1)
gtable 0.2.0 2016-02-26 CRAN (R 3.4.1)
inline 0.3.14 2015-04-13 CRAN (R 3.4.1)
labeling 0.3 2014-08-23 CRAN (R 3.4.1)
lattice 0.20-35 2017-03-25 CRAN (R 3.4.1)
lazyeval 0.2.0 2016-06-12 CRAN (R 3.4.1)
magrittr 1.5 2014-11-22 CRAN (R 3.4.1)
MASS 7.3-47 2017-02-26 CRAN (R 3.4.1)
Matrix 1.2-10 2017-05-03 CRAN (R 3.4.1)

3This time window is not the best illustration of this model because the U.S. was in the middle of an extended post-crisis
recovery. Still, we do see that the model correctly identifies a number of short-term reversals over this period.

30

http://discourse.mc-stan.org/t/hidden-markov-model-with-constraints/1625/4
http://discourse.mc-stan.org/t/transversing-up-a-graph-hierarchical-hidden-markov-model/1304/11
https://github.com/luisdamiano/gsoc17-hhmm

methods * 3.4.1 2017-06-30 local
munsell 0.4.3 2016-02-13 CRAN (R 3.4.1)
plyr 1.8.4 2016-06-08 CRAN (R 3.4.1)
R6 2.2.2 2017-06-17 CRAN (R 3.4.1)
RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.4.1)
Rcpp 0.12.12 2017-07-15 CRAN (R 3.4.1)
RcppEigen 0.3.3.3.0 2017-05-01 CRAN (R 3.4.1)
reshape2 1.4.2 2016-10-22 CRAN (R 3.4.1)
rlang 0.1.2 2017-08-09 CRAN (R 3.4.1)
rstan * 2.16.2 2017-07-03 CRAN (R 3.4.1)
scales 0.5.0 2017-08-24 CRAN (R 3.4.1)
StanHeaders * 2.16.0-1 2017-07-03 CRAN (R 3.4.1)
stats * 3.4.1 2017-06-30 local
stats4 3.4.1 2017-06-30 local
stringi 1.1.5 2017-04-07 CRAN (R 3.4.1)
stringr 1.2.0 2017-02-18 CRAN (R 3.4.1)
tibble 1.3.4 2017-08-22 CRAN (R 3.4.1)
tools 3.4.1 2017-06-30 local
utils * 3.4.1 2017-06-30 local
viridisLite 0.2.0 2017-03-24 CRAN (R 3.4.1)

6 References

Ardia, David, Keven Bluteau, Kris Boudt, and Leopoldo Catania. 2017. “Forecast Risk with Markov-Switching
GARCH Models: A Large-Scale Performance Study.” SSRN Pre-Print. doi:10.2139/ssrn.2918413.

Bakis, Raimo. 1976. “Continuous Speech Recognition via Centisecond Acoustic States.” The Journal of the
Acoustical Society of America 59 (S1). ASA: S97–S97.

Baum, Leonard E, and Ted Petrie. 1966. “Statistical Inference for Probabilistic Functions of Finite State
Markov Chains.” The Annals of Mathematical Statistics 37 (6): 1554–63.

Baum, Leonard E, and George Sell. 1968. “Growth Transformations for Functions on Manifolds.” Pacific
Journal of Mathematics 27 (2). Mathematical Sciences Publishers: 211–27.

Baum, Leonard E. 1972. “An Inequality and Associated Maximaization Technique in Stattistical Estimation
for Probablistic Functions of Markov Process.” Inequalities 3: 1–8.

Baum, Leonard E., and J. A. Eagon. 1967. “An Inequality with Applications to Statistical Estimation
for Probabilistic Functions of Markov Processes and to a Model for Ecology.” Bulletin of the American
Mathematical Society 73 (3). American Mathematical Society (AMS): 360–64. doi:10.1090/s0002-9904-1967-
11751-8.

Baum, Leonard E., Ted Petrie, George Soules, and Norman Weiss. 1970. “A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains.” The Annals of Mathematical
Statistics 41 (1). Institute of Mathematical Statistics: 164–71. doi:10.1214/aoms/1177697196.

Bengio, Yoshua, and Paolo Frasconi. 1994. “An Input Output Hmm Architecture.” In Proceedings of the 7th
International Conference on Neural Information Processing Systems (NIPS 1994), 427–34.

Betancourt, Michael. 2017. “Identifying Bayesian Mixture Models.” Stan Case Studies 4. http://mc-stan.
org/users/documentation/case-studies/identifying_mixture_models.html.

Bollerslev, Tim. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics

31

https://doi.org/10.2139/ssrn.2918413
https://doi.org/10.1090/s0002-9904-1967-11751-8
https://doi.org/10.1090/s0002-9904-1967-11751-8
https://doi.org/10.1214/aoms/1177697196
http://mc-stan.org/users/documentation/case-studies/identifying_mixture_models.html
http://mc-stan.org/users/documentation/case-studies/identifying_mixture_models.html

31 (3): 307–27. doi:10.1016/0304-4076(86)90063-1.

———. 2010. “Glossary to Arch.” In Volatility and Time Series Econometrics: Essays in Honor of Robert F.
Engle, edited by Tim Bollerslev, Jeffrey Russell, and Mark Watson. Advanced Texts in Econometrics. Oxford
University Press. doi:10.1093/acprof:oso/9780199549498.003.0008.

Carpenter, Bob, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Michael A
Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. “Stan: A Probabilistic Programming Language.”
Journal of Statistical Software 76 (1). doi:10.18637/jss.v076.i01.

Gelman, Andrew, and Donald B Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science 7 (4): 457–72. doi:10.1214/ss/1177011136.

Haas, Markus, Stefan Mittnik, and Marc S. Paolella. 2004a. “A New Approach to Markov-Switching GARCH
Models.” Journal of Financial Econometrics 2 (1): 493–530. doi:10.1093/jjfinec/nbh020.

———. 2004b. “Mixed Normal Conditional Heteroskedasticity.” Journal of Financial Econometrics 2 (1):
211–50. doi:10.1093/jjfinec/nbh009.

Jelinek, Frederick. 1976. “Continuous Speech Recognition by Statistical Methods.” Proceedings of the IEEE
64 (4). IEEE: 532–56. doi:10.1109/PROC.1976.10159.

Jordan, Michael I. 2003. “An Introduction to Probabilistic Graphical Models.” In Preparation.

Murphy, Kevin P. 2012. Machine Learning. MIT Press Ltd.

Rabiner, Lawrence R. 1990. “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition.” In Readings in Speech Recognition, 267–96. Elsevier. doi:10.1016/b978-0-08-051584-7.50027-9.

Stan Development Team. 2017a. “RStan: The R Interface to Stan.” http://mc-stan.org/.

———. 2017b. “Shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian
Models.” http://mc-stan.org/.

———. 2017c. Stan Modeling Language: User’s Guide and Reference Manual: Version 2.17.0.

Viterbi, A. 1967. “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm.” IEEE Transactions on Information Theory 13 (2). Institute of Electrical; Electronics Engineers
(IEEE): 260–69. doi:10.1109/tit.1967.1054010.

32

https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1093/acprof:oso/9780199549498.003.0008
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1093/jjfinec/nbh020
https://doi.org/10.1093/jjfinec/nbh009
https://doi.org/10.1109/PROC.1976.10159
https://doi.org/10.1016/b978-0-08-051584-7.50027-9
http://mc-stan.org/
http://mc-stan.org/
https://doi.org/10.1109/tit.1967.1054010

	The Hidden Markov Model
	Model specification
	The generative model
	Characteristics
	Inference
	Parameter estimation
	Worked example

	The Input-Output Hidden Markov Model
	Definitions
	Inference
	Parameter estimation
	A simulation example

	A Markov Switching GARCH Model
	Acknowledgements
	Original Computing Environment
	References

