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ABSTRACT

The Wavelet Transfonm provides a new tool for analyzing
the time-frequency evolution of transient signals as an alternative
to the classical Short-Time Fourier Transform. The purpose of
the present paper is to provide an overview of the applicability of
the wavelet transform technique to the analysis of the propagation
of dispersive ultrasonic waves. The wavelet transform is briefly
introduced, with special emphasis on the relationship between the
wavelet transform and the group velocity of dispersed signals. A
complex mother wavelet is utilized to abtain the time evolution of
the various spectral components of the ultrasonic signal, and the
magnitude of the wavelet transform is used to represent the
envelope of the ultrasonic pulse and to determine the time of
arrival of the acoustic energy. This approach results in a time-
scale representation of the ultrasonic signal which is extremely
useful in the characterization of thin coatings using the dispersion
behavior of the surface wave velocity. Numerical simulations and
experimental results are presented to discuss the usefulness of the
wavelet transform.

INTRODUCTION

Processing and analysis of a signal involves the division of a
signal into different compaonents which are used for extracting the
information of interest. The most common technique used for
analyzing transient nonstationary signals is the Short Time Fourier
Transform, in which the signal is decomposed into its harmenic
components. As an alternative, the Wavelet Transform (WT) can
also be used to analyze and identify the various components of an
ultrasonic signal.

The application of the WT in ultrasonics is discussed, with
emphasis on the time-frequency analysis of dispersed signals.
Since the type and amount of information extracted from the
analysis is directly related to the choice of the mother wavelet, it
is shown that an analytic mother wavelet is particularly suited to
represent the envelope of the acoustic energy in time and
frequency domain. The magnitude of the analytic wavelet
transform is directly related to the rate of energy arrival, thus it is
an optimal estimator for the measurement of group delay or
velocity in ultrasonic analysis of dispersed signals.

In ultrasenics, the wavelet transform has been used to detect
pulses buried in noise and also to measure dispersion of surface
acoustic waves. The WT has been successfully utilized to enhance
ultrasonic signal detection in presence of background noise, and
this technique was successfully applied in ultrasonic flaw
detection. In particular the change in measured time delay
between two pulses has been calculated as a function of the SNR
of the input signal. Numerical results show that the system is
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capable of performing accurate time measurements even with
SNR of -15 dB[1]. Improvements in detection were also
experimentally quamified by tests performed on steel samples of
different thickness with flaws of variable sizes[2].

The technique here presented was applied for the
measurement of elastic constants of chromium coatings on steel
substrates using laser-generated surface acoustic waves. The time
of arrival of the acouslic energy was utilized to determine the
group velocity as a function of frequency of the wave and thus o
characterize the variations in depth of the elastic properties of the
coating/substrate sysiem.

ANALYTIC WAVELET TRANSFORM IN ULTRASONICS

In the dispersion analysis of acoustic signals it is important to
analyze the time-frequency evolution of the received ultrasonic
transient signals, with as litle distortion as possible. This is
commonly achieved using signal processing techniques such as
the Short-Time Fourier Transform (STFT) which provides
accurate information about the signal simultancously in the ime
domain and the frequency domain. In the STFT, the time
variation of the spectral components of the signal is analyzed
using a sliding window in time. The choice of the window
determines the resolution in time domain and frequency domain
of this analysis. The uncertainty principle states that the precise
measurement of time and frequency are fundamentally
incompatible, since sharp localization in time and frequency are
mutually exclusive. Assuming that the window is localized in a
time interval A and in a frequency band Q, the product A-0 is
larger than C, where C is a constant depending on the units uscd.
Thus, the choice of A and Q affects very much the resuls
obtained from the analysis.

The continuous wavelet transform (WT) is a new method of
processing transient nonstationary signals simultaneously in time
and frequency domain. Similar ta the STFT, which utilizes
modulation in time domain to translate the window in frequency,
the WT uses scaling in time domain to scale a single function in
frequency. This function, commonly referred (o as the mother
wavelet, is used to extract details and information in time and
frequency domain, from the transient signal under analysis. This
approach results in a more natural description of the signal, since
the size of the window in the time domain is now function of the
scaling.

By definition, the WT of a signal s(t} is the correlation
between the signal and a set of basic wavelets b 1), and is
expressed by the following relationship[3]:
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The function h(t), referred to as the mother wavelet, must satisfy
the admissibility condition. The set of daughter wavelets &, ,(t) is
generated by dilation/compression in time of h(1)[4].

The WT transform can be seen as a bank of filters which are
constructed by dilationfcompression of the single function hf1).
The filter constructed by the dilated version of the mother wavelet
processes the low frequency information of the signal s(z), and the
one related to the compressed version of kft), analyzes the high
frequency information. The output of the filter bank is thus
related not only to the input signal s(1) but also to the type of
filters h,,(¢) that are utiized. By choosing a different mother
wavelet, different characteristics of the input signal s(z) can be
cbtained as output. When performing a time-frequency
decomposition of a signal using either the STFT or the WT, no
theoretical gain is expected from one method as opposed to the
other, in the case all the information is used. But, if only partial
information is retained in the analysis, such as using only the
magnitude and not the phase and looking only at the output of
particular filters, the choice of the technique and of the mother
wavelet will affect the informaticn that can be extracted. The
flexibility of choosing the proper mother wavelet is one of the
strongest advantages of using the WT, since the choice of the
mother wavelet for a particular problem improves the signal
processing capability of the technique. Tailoring of the wavelet
ta the acal problem is possible and should be done.

Scaling of the mother wavelet also results in a more
appropriate decomposition of the various spectral components of
transient non-stationary signals. In the STFT the width A of the
time window is a constant, while in the WT it varies depending on
the scaling 4. Assuming that A(z) represents a band-limited signal
with a central frequency f, and bandwidth £, a daughter wavelet
h, 4ty 18 a similar signal with center frequency f = f, / @ and
bandwidth {1, = £ / a. The relative bandwidth is constant for
every daughter wavelet and equal to the one of the mother
wavelet:

4o MR 22 o Constant 3)

It follows that A, = a - A, 50 also the time window will
change as a function of the scaling a. This results in larger time
windows for lower frequencies and the opposite for higher
frequencies, which is a more natural procedure for decomposing
a transient signal, since a longer observation time is necessary for
analyzing slower varying components of the signal.

The utilization of analytic signals for analyzing transient
signals was first proposed by Gabor[5] and later introduced in
ultrasonics by Gammel{6]. The total energy of a bounded
oscillator is given by the sum of the kinetic energy, which is
proportional to the square of the particle velocity, and of the
potential energy, proportional to the square of the particle
position. The total energy of the system can be calculated using
a complex function whose real and imaginary parts are the square
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raots of the kinetic energy and potential energy, respectively[7].
The total energy of the oscillatar can thus be expressed as a single
side band complex signal. whose real and imaginary part are
Hilbert transforms of each other. This fact is extremely important
for understanding the usefulness of the utilization of analytic
wavelet transform in ultrasonics. An uvltrasonic transducer is
sensitive to the local pressure field, and therefore, generates a
signal proportional to the local displacement, 1.e. the square rool
of the potential energy.

An analytic mother wavelet A%t) can be constructed by
zeroing the negative frequency components of the real wavelet
h(t). The magnitude of the complex analytic WT output thus
describes the envelope of the ultrasonic signal. Furthermore the
square of this quantity is equal to the true rate-of-armival of the
sound energy traveling through the material[8]. Using the real
mother wavelet  Afr), the square of the rcal WT 1s only
proportional to the rate-of-arrival of the potential energy, while
the square of the analytic WT, obtained using A%}, is
proporticnal to the total, kinetic plus potential, instantancous
energy.

DISPERSION ANALYSIS OF ULTRASONIC SIGNALS

From wave theary, it is known that the ultrasonic signal can
be expressed as a liner combination of harmeonic functions. The
dispersion relation describes the relationship between the
frequency and wavelength of each component, i.e. the relanenship
between the spatial and temporal rate-of-change of the waveform.
In a non-dispersive medium, the dispersion relation is linear, thus
all wave components travel with the same phase velocity, which
in this case coincides with the group velocity{9]. The signal thus
maintains its criginal shape in time and space and does not
disperse. In a dispersive medium, an arbitrary waveform will
evolve in time and space due to the dependence of the phase
velocity on the frequency. Since each progressive wave
component propagates with a different phase velocity, the initial
shape of the transient waveform is distarted in time. A typical
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Figure 1. Typical ultrasonic signal (Signal #1). A linear
phase delay was used to simulate dispersion in Signal #2.



non-dispersed signal is plotted as the top curve in figure |
{labeled Signal #1}. A linear phase delay was introduced for the
dispersion relation. resulting in Signal #2 on the same figure.
The majority of absolute ultrasonic velocity data have been
obtained using time-of-flight methods{10], such as pulse-echo-
overlap or double-pulse superposition methods{11],[12]. In order
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Figure 2. Plot of the real part of HI and M1 mother wavelets.
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to utilize in dispersion analysis the pulse-echo technique, the
signal must be decomposed into a series of components which
ravel with a pseudo-constant phase and group velocity. When
the components making up an original transient waveform are
spread over a wide spectral range, the resulting evolution of the
spectrum becomes a natural candidate for the wavelet transform
analysis. Analogous to the wave-packet Fourier decomposition,
the signal decomposition obtained using wavelet components can
be utilized to analyze the time-frequency behavior of dispersive
phenomena.

An optimal mother wavelet for dispersien analysis is the
Mortet wavelet| [3], defined as:

hy () = g W) gt TR 3)

which represents a complex harmonic signal with frequency f,
whose amplitude is modulated by a gaussian waveform of width
o. The choice of o affects the tempora! width of hy(t), and
consequently its frequency bandwidth Q. Two mother wavelets,
HI and M1, are plotted in figure 2. They were both obtained
using eq. 2 with different choices of o.

Using H1, which exhibits a larger time-window A, but a
smaller frequency bandwidth €, the signal is decomposed into a
series of wavelet components which have a gaussian bandwidth
about a center frequency f, / a, where a is the scale defined in eq.
1. Each wavelet component can be considered as a narrowband
ultrasonic echo that travels through the material without any
dispersion. Pulse-echo overlap can thus be used to estimate the
acoustic delay and group velocity. This discussion is graphically

summarized in figure 3. where dispersion is simulated using a
signal composed by two echoes, the first of which is Signal #1 of
figure 1, and Signal #2 is the other. Using HI the top curve of
figure 3 is decomposed info various wavelet components, three of
which are also plotted in figure 3. For the first echo, all three
components overlap in time, while this does not occurr for the
second echo. Thus each wavelet component is characterized by an
associated group of waves that have a particular propagation
velocity. The center frequency of a wavelet component
determines the group velocity and thus the amival time. The
detected point for the group delay time is the peak point of the
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Figure 3. The top curve represents a composite of the signals in
figure 1. Three wavelet components obtained for different values
of the dilation « are also plotted. Dispersion on the second echo is
clearly seen as a variation of the time of arrivad of the difTerent
wavelet components.

envelope curve of the received signat waveform. A plot of the
estimated group delay as a function of the normalized frequency
is shewn in figure 4. For comparison, also the theoretical
expected group and phase delay are plotted as lines.

The mothet wavelet M1, which has been extensively used to
detect ultrasonic broad-band echoes buried in high level noise,
was also utilized in the dispersion analysis. Results are shown in
figure 4 as open circles. Unfortunately, M1 being a broad-band
signal itself, it cannot be used in dispersion analysis since its
components would disperse. This is clearly seen in figure 4,
where the estimation for the group delay clearly exhibit a different
behavior from the expected values.

From the above it seems that the optimal choice for the
analysis of the dispersion is to have a mother wavelet as narrow
as possible in frequency, since the peak point of the envelope
curve is used for the delay measurement. Unfortunately, the
decomposition obtained using H1 is very sensitive to the noise,
compared to the one obtained using M1, resulting in less accurale
time delay measurements. Clearly, as in the STFT case, the
uncertainty principle does hold. but it can be adapted to the
problem at hand. Techniques sach as time-averaging can usually
be utilized to increase the signal-to-noise ration (SNR), and thus
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Figure 4. Calculated values of group delay using HI and M1
mother wavelets are shewn as open circles and stars, respectively.
For comparison, the theoretical group and phase delay are also
plotied as lines.

improve the time accuracy.
UULTRASONIC CHARACTERIZATION OF COATINGS

Surface waves are utilized to detenmine elastic properties near
the surface of materials. Because of the energy concentration near
the free boundary, the phase and group velocities are sensitive to
the elastic conditions at the surface. Measurements made at
different frequencies can be used to probe different depths below
the surface because the depth to which particle motion occurs is
comparable to the wavelength. The variation in depth of elastic
properties can thus be inferred from the measurement of the
surface acouslic velocity propagating along the surface of a steel
substrate coated with chromium film.

By measuring the ultrasonic signals in two different positions,
r; and r,, and comparing the two wavelet transforms, the group
delay T={r,- r,;)/ v, is casily obtained as a function of @ and thus
of the center frequency f = f, /a. The surface velocity of the
coating can be estimated from the dispersion curve obtained from
the wavelet transform decomposition, as discussed previously.

The top signal in figure 5 represents typical surface wave
signal obtained on a steel sample coated with a chromium film.
The surface acoustic wave, generated using a Nd:YAG laser, Q-
switched to produce pulses of approximate duration of 5 nsec, and
energy of 5 m], is dispersive due to the higher velocity of sound
in the coating[14]. The higher frequency component arrives at
approximately 14 usec., while lower frequency components
arrive at later times, as shown in figure 5. For high frequencies
the acoustic wavelength is proporticnal to the coating thickness.
thus the group delay at these frequencies yields the group surface
velocity for the coating. The measurement for much smaller
values of frequencies is used to calculate the substrate surface
velocity, The time-scale decomposition of the signal is
represented in figure 6 as a pseudo-color density plot. The
magnitude of the WT is plotted in the bottom as a function of the
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time delay & and the dilation coefficient s, such that a = 2. For
comparnison the magnitude of the WT for a signal obtained on a
steel sample without chromium, is given in the top plot of fig, 6.
As expected, the arrival time for the wavelet components with
lower dilation coefficient s is less than the ones with higher
values of m, which correspond to lower frequencies. The
measured dispersion curve is given in figure 7. The acoustic
velocity calculated using the WT is plotted as a function of the
center frequency as open circles. For comparison also results
obtained using the STFT are given as crosses. Values obtained
using the WT agree better with indipendent measurements.
Using the WT, the two largest wavelet components were
extracted and plotted in the middle section of figure 3. Also the
sum of only these two components is shown in the botttom plot of
the same figure. As expected the group delay of the higher
frequency wavelet component corresponds to the velocity of the
surface wave in the chromium coating, while the other lower
frequency component, to the valocity in the sieel substrate.
Furthermore the signal resulting from sum of these two
compenents closely matches the original signal, thus showing the
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Figure 5. (Top) Surface wave signal on a stec] subsirate coated
with chromium film. (Middle) Two largest wavelel components
of the top signal, and (Bottom} their sum.

value of the proposed wavelet decomposition.
CONCLUSIONS

The preceding results and discussion demonstrated the
usefulness and effectiveness of wavelet transform as a signal
processing technique for the analysis of ultrasonic waveforms.
The WT seen as a bank of matched filters can be used for the
analysis of transient waves propagating in a dispersive medium
The time-scale representations resulting from the WT demonstrate
a very efficient means to obtain the velocity dispersion in an
ultrasonic medium, The technique was successful in estimating
the dispersion relation of surface acoustic wave group velocity
induced by laser generation on a steel substrate with a chrominm
coating.
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Figure 6. Pseudo color plot of the magnitude of the WT for a
signal obtained on the steel substrate {Top plot), and for the top
signal in figure 5 (Bottom plot)
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