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Digital Image Enhancement and Noise Filtering
by Use of Local Statistics

JONG-SEN LEE

Abstract-Computational techniques involving contrast enhancement
and noise filtering on two-dimensional image arrays are developed based
on their local mean and variance. These algorithms are nonrecursive
and do not require the use of any kind of transform. They share the
same characteristics in that each pixel is processed independently. Con-
sequently, this approach has an obvious advantage when used in real-
time digital image processing applications and where a parallel processor
can be used. For both the additive and multiplicative cases, the a prior
mean and variance of each pixel is derived from its local mean and
variance. Then, the minimum mean-square error estimator in its sim-
plest form is applied to obtain the noise filtering algorithms. For
multiplicative noise a statistical optimal linear approximation is made.
Experimental results show that such an assumption yields a very effec-
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tive filtering algorithm. Examples on images containing 256 X 256
pixels are given. Results show that in most cases the techniques devel-
oped in this paper are readily adaptable to real-time image processing.

Index Terms-Digital image enhancement, local statistics, noise filter-
ing, real-time processing.

INTRODUCTION
Image processing on digital computers has been gaining in

acceptance in recent years [1]-131. Early techniques in image
processing concentrated mostly on procedures that were carried
out computationally in the frequency domain (Fourier or
Walsh), which was a natural extention of one-dimensional
linear signal processing theory. In due course it became well-
known that computing a two-dimensional transform for a large
data array is a very time-consuming activity even with fast
transform techniques on large computers. Hence, implementa-
tion of frequency domain procedures for real-time processing
of images appears less than promising. More recent works
based on an application of Kalman filtering algorithm [4] or
Bayesian estimation extended to two-dimensional arrays led to
the concept of a recursive filtering algorithm [51, [6]. The
power of recursive algorithms for real-time one-dimensional
signal processing are well established. However, when applied
to a two-dimensional array, the algorithm operates in the
spatial domain in which pixels have to be processed sequen-
tially. As a consequence, the procedure is no longer computa-
tionally efficient and loses its attraction for real-time processing.
Algorithms developed in this paper share a particular char-

acteristic in that each pixel can be processed separately with-
out waiting for its neighboring pixels to be processed. This
characteristic permits a direct implementation of these algo-
rithms for real-time image processing. Applying local statistics
to image processing is not a new idea. Ketcham et al. [ 7] used
the entire local histogram for real-time image enhancement,
and Wallis [81 applied local mean and variance to filter out
scan line noise with striking results. This paper extends this
family of algorithms to contrast enhancement and noise filter-
ing. Both additive white noise and multiplicative white noise
cases are considered. Most additive noise filtering approaches
utilize the fast Fourier transform, convolution, or recursive
algorithms. In the transform and convolution methods, the
autocorrelation between pixels is either assumed or approxi-
mated, and in the recursive algorithm, a linear causal or semi-
causal autoregressive image model is generally assumed. The
techniques based on the use of local mean and variance de-
scribed in this paper deviate from these approaches. The
basic assumption is that the sample mean and variance of a
pixel is equal to the local mean and variance of all pixels
within a fixed range surrounding it. The validity of this
assumption is debatable but so are most other statistical image
representations encountered in the current practice. In the
additive noise filtering case, the a priori mean (variance) of the
estimated image is calculated as the difference between the
mean (variance) of the noise corrupted image and the mean
(variance) of the noise by itself. This technique is extended
to include multiplicative noise filtering and also the case in-
volving both multiplicative and additive noise. Although this
simple approach may not have the mathematical elegance and
sophistication of a few other techniques, our experimental
results and those reported by Wallis [81 indicate that the local
mean and variance technique is a very effective tool in both
contrast stretching and noise filtering applications.
Let x11 be the brightness of the pixel (i, j) in a two-dimensional

N X N image. The local mean and variance are calculated over
a (2n + 1) X (2m + 1) window. The local mean is defined as
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1 n+i m+j

r1 (2n + l)(21m + 1) k=i-n 1=X-m
Similarly, the local variance is

(1)

1 i+n

'j (2n + 1)(2m + 1) k=i-n Z (Xk,l- rn,,)2-
I=1j-m

In this paper, Section II is devoted to spatial contrast en-

hancement for which only the local mean is required. Section
III deals with additive noise filtering. Section IV treats images
corrupted by multiplicative noise, and Section V extends the
results of Sections III and IV to images corrupted by both
additive and multiplicative noise. In Section V, a simplified
algorithm is discussed to approximate the local mean and
variance and future research using local statistics is briefly
mentioned.

II. SPATIAL CONTRAST ENHANCEMENT

Gray level rescaling, high-pass filtering, and histogram redis-
tribution [91 are the most popular techniques in image con-

trast enhancement. Wallis [8] suggested an algorithm based on

local mean and variance in which each pixel is required to have
a "desirable" local mean md and a "desirable" local variance
vd such that

Xi,; = md +
/i (Xi, - Mi,1)

i

(3)

where, in (3), mirj and vij are local mean and variance as given
by (1) and (2). It is easy to verify that the x1 y has a mean md

and variance Vd if we consider mirj and viuj as the true mean

and variance of xi,1. The main drawback of this technique is
that it tends to enhance subtle details at the expense of the
principal features which are lost in the process. Fig. 1 shows
the original image and the image processed by (3). The river
in the original image and other large objects are difficult to
recognize in the processed image. To compensate for this, an

algorithm is designed such that a pixel xij will maintain its
local mean, and yet permits its variance to be modified by a

factor of its original local variance. The modified algorithm is

xi,j= rnmij + k(xij - mi,j) (4)
where k, the gain, is the ratio of new local standard deviation
to the original standard deviation. This scheme has a distinct
computational advantage over the scheme rooted in (3). The
computation of local variance vi X is not required and only
mijX need be computed. If k > 1, the image will be sharpened
as if acted upon by a high-pass filter. If 0 S k < 1, the image
will be smoothed as if passed through a low-pass filter. In the
extreme case, k = 0 and xi is equal to its local mean mi,.
This algorithm can be easily extended to enhance images

with an ill-distributed histogram. Let g(x) be the gray level
rescaling function [9], then (4) is modified to

4j =g(mi,j) + k(xij - mi,j). (5)

In the case of a linear gray level stretch, g(x) is a linear rela-
tion. Several images are processed and shown in Fig. 1 using
g(x) = ax + b, where a = 0.9 and b = 13 to allow contrast en-

hancement at both ends of gray scale (between 0 and 255).
The linear function g(x) used in this picture yields an effective
contrast stretch in both the highlights and the dark areas of
the image. The window size of 3 X 3 or 5 X 5 is large enough
to carry out contrast enhancement. For noise filtering (to be
discussed in later sections), however, a 7 X 7 or higher di-
mensional window is more desirable but at the expense of
image resolution. All images of Fig. 1 are processed by the use

of a 5 X 5 window. Fig. 1(c) shows that for k = 2, both the

11- ',\ ,

Fig. 1. (a) Original (or k = 1). (b) Wallis' algorithm. (c) k = 2. (d) k = 3.
(e) k = 0.5. (f) k =0.

gross features and subtle details are enhanced in the same

proportion. The case k = 1 has no effect on the image. For
k = 0.5, the image is blurred as if passed through a low-pass
filter. For k = 0, the image is averaged over the 5 X 5 window.

III. ADDITIVE NOISE FILTERING

In this section, attention is focused on filtering of images
degraded by white additive noise. Most current approaches to
this problem employ frequency domain techniques, direct
inversion, or recursive Kalman filtering. In the present paper,
we derive a very simple algorithm based on the use of local
mean and variance of an image. Let zij be the degraded pixel
xij; then

Zij = Xij, + Wi,j (6)

where wi X is a white random sequence with

E[wi,j] = 0

and ELw1,1wk,J = U11,k2j,1, where 6i,k is the Kronecker
delta function and E is the expectation operator. (The dis-
tribution of w1,j is irrelevant in this derivation.) The problem
is to estimate xij, given zij and the noise statistics.
From (6), we have

xi,j A E[xi,il = E[zi,il = Zij
and

Qij -A E[(xi,1 - x-,;)2] = E[(zi,i - Zij)2] _

(7)

(8)

In most filtering techniques, the a priori mean and variance
of xi,j are derived from an assumed autocorrelation model
or, recursively, from an autoregressive Markov sequence. In
either method, it is an approximation. Assume that xiFj and
Qjj are the a priori mean and variance of xij, which in turn
are approximated by the local mean and variance of (7) and
(8). Under this assumption, it is very easy to obtain a filter-
ing algorithm either by minimizing the mean-square error or

(2)
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by weighted least-square estimation [101. Both methods will
produce the same algorithm. The estimated xij,, xi,i is com-
puted by

Xi,j -2 xi,j + ki,i(zi,; - Xi,j)
where the gain is given by

Qi,'
Qiji + a

Equation (9) can be written as

xij = (1 - ki,)xi,j + kij,(zi,j).

(9)

(10)

(11)

(a) (d)

Since Q,,1 and u2 are both positive, kij will lie between 0
and 1. A simple intuitive interpretation is that for a low signal-
to-noise ratio region Qj,j is small compared with a2, ki,j1 0,
and the estimated xi, Xis xiij. Conversely, for a high signal-to-
noise ratio region, Qij is much larger than a2, ki j 1, and
Xij - zi,j, the corrupted pixel. The use of different window
sizes will greatly affect the quality of processed images. If
the window is too small, the noise filtering algorithm is not
effective. If the window is too large, subtle details of the
image will be lost in the filtering process. Our experiments
indicate that a 7 X 7 window is a fairly good choice. All
images presented in this and later sections are processed by
the 7 X 7 window.

Fig. 2 shows the original image, the image contaminated
with additive noise and the estimated image produced by the
local mean and variance algorithm. Clearly, in a smooth area,
the pixel is averaged over the window and in a high contrast
or edge area, the noise corrupted pixels are weighted higher
than their local mean value. Fig. 2(d), (e), and (f) are the
plots of intensity along a specific scan line for the original, the
noise corrupted, and the processed images, respectively. This
algorithm works equally well for an image corrupted by a
Gaussian noise. Results for the latter case are shown in Fig.
3(a) and (b).

IV. MULTIPLICATIVE NOISE FILTERING

Images containing multiplicative noise have the characteristic
that the brighter the area the noisier it is. Mathematically, the
degraded pixel can be represented by

Zii= Xi,1ju, (12)

where E[u,jj] = uij, and
E[(ui,i - Ui,j)(Uk,l - Uk,l)] = 25i,k5j,1

Nahi and Naraghi [111 treat this problem via the Kalman-
Bucy approach which necessitates solving nonlinear estimation
problem by numerical integration. In this paper, the non-
linearity in (12) is treated differently. An optimal linear
approximation of (12) is used to produce a filtering algorithm
similar to that for the additive noise case. Experimental re-
sults show that the derived algorithm is a very promising one.
Let

Zi,; =A Xij +B Uij + C (13)

where A, B, and C are nonrandom variables. They are to be
chosen to minimize the mean-square error between zi,j and
zi,j and also to make Zj,; an unbiased estimate of zi j. For
Zi,j to be unbiased estimate of zij, we must have

A i + B ui,1 + C = xjj i, X

or

(14)

Substituting (14) into (13) and forming the mean-square
error, we arrive at the performance index to be minimized,

(b) (e)

(c) (f)
Fig. 2. (a) Original. (b) Original plus additive uniform noise (-30, 30).

(c) Additive noise removed with (7 X 7) mesh, a2 = 300. (d) Original
intensity profile along a scan line. (e) Profile at (d) contaminated by
additive noise. (f) Profile at (e) filtered for noise.

Fig. 3. (a) Original plus additive Gaussian noise, a2 = 300. (b) Noise
removed.

J = E[A(xi,j - Xi,j) + B(ui,i - ui7j) - (x Xiui,1 - x i7 9J).
Upon carrying out the necessary mathematical procedures, we
obtain the following relation:

Zi, = ui,jxi,j +yi,1(ui,1 -I (15)
It is not surprising to find that (15) actually is the first-order
Taylor series expansion of zi,; about (xij, Ui,,).
The a priori mean and variance of xij are computed from

(12) and are given by

(16)Xi,j = Fi,il/ii,j
and

= var(zi,1) +Z2 -2
+ 4i -i,2

in which var(zi,j) is the variance of zij. The quantities Zi j
and var(zi,j) are approximated by the local mean and local
variance of the corrupted image. Using (16) and (17), and

(17)
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applying the Kalman filtering algorithm to (15), we have

Xi,j = Xi,j + ki,(zi,j - ij,j xi,j),

in which

ui,j Qi,jk11 =ji2 +2 j Qitj

An experimental example is shown in Fig. 4, in which the
original image is corrupted by multiplicative noise uniformly
distributed between 0.7 and 1.0, and the estimated image has
been processed by the algorithm developed in this section.
Considerable improvement is shown in the processed image,
thus substantiating the effectiveness of the local mean and
variance technique.

V. FILTERING OF COMBINED ADDITIVE AND
MULTIPLICATIVE NOISE

It is very easy to extend the algorithms of previous sections
to deal with images corrupted by both additive and multiplica-
tive noise. A noise-corrupted image is described by

zij= xi,j ui,j + wi,1 (20)

in which the statistical characteristics are the same as given in
Sections III and IV. Assume that ui,j and wi,j are independent
white noises. This independence assumption can be removed,
but the result is a more complicated formulation. Following
the idea of an optimal linear approximation of Section IV, we
have

= Ui,j Xi,j + Xi - i,j) +

The formulas for the a priori mean and variance of xi,j of Sec-
tion IV are modified to read

(21)Xij = (ii,j - Wij)1uij
and

var(zi,) Zi2 -2 2

The filtering algorithm is

Xij = xi,j + ki,j(zi,j - Ui,j Xi,- Wi,j)
in which

2 i+ Qi,jisj .ij C2 + U2jQ. + CJ2'

(22)

(23)

Fig. 5(a) shows the image corrupted by an additive noise
uniformly distributed between gray levels -20 and +20 and
also a multiplicative noise uniformly distributed between
multiplicative factors 0.7 and 1.0. The processed image,
Fig. 5(b) shows a very significant improvement over the orig-
inal image.

VII. REMARKS AND CONCLUSIONS

The principal computational load of the developed algo-
rithms is in the calculation of the local means and variances,
especially the latter. To lighten this burden Wallis [8] pro-
posed a fast algorithm in which the image is partitioned into
square subregions over which the local mean and variance are
computed. Then the local mean and variance of a particular
pixel are approximated by the use of two-dimensional inter-
polation formulas. Results, as reported by Wallis [8], are

quite favorable. It is believed that Wallis' approach will yield

Fig. 4. (a) Multiplicative noise, U(0.7, 1.0). (b) Multiplicative noise
removed.

Fig. 5. (a) Image corrupted by additive and multiplicative noise. (b)
Restored.

an equally impressive improvement when applied to our con-

trast enhancement and noise filtering algorithms.
In conclusion, image processing algorithms presented in this

paper, based on considerations of the local image statistics,
have a structure which makes them naturally suitable for
parallel processing. Since the latter approach offers great
computational economy, real or near real-time processing
can be achieved. Future research in this area is to extend
the method to image restoration of motion blur and other
degradations characterized by local correlations around pixels.
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