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Abstract

The interaction of fast heavy ions and alpha
particles with microelectronic cells is examined. An
analytic expression for the event rate due to the
cosmic flux is derived based on the track length dis-
tribution in rectangular volumes. Both transient
(soft errors) and permanent (oxide damage) effects
are considered. The multiple hit consequences of
the LSI/VLSI cells lying in a common plane are
developed.

Introduction

The continued reduction in size of elements in
microelectronics, the matrix array of such devices
in a planar field (chip), the size of the finite volume
of radiation effect surrounding an ion track and the
variation in possible source distribution all require
geometrical analysis when one attempts the descrip-
tion of heavy ion and alpha particle radiation effects
in VLSI/LSI. These relationships have confronted
other investigators in such widely ranging fields as
Radiation Biology and Nuclear Reactor Theory. The
basic mathematics formalism has been developed in
the field of Geometric Probability. This work draws
upon those areas of endeavor for application in VLSI
electronic circuitry.

Dose Distribution Around an Ion Track

The column of ionization which a fast heavy ion
leaves in its wake has been described previously. 1, 2
The central core contains doses of -5x106 Rad(Si)
for protons and -5xl09 Rad(Si) for Fe56.

Although bound by Poisson statistics in the
energy loss via production of delta rays, the track
can be viewed as a cylinder in the material of
interest whose radius is approximately 1 ,u and
within which the dose falls off from the center as
r-2. For this work it is the size of the cylinder in
relation to the size of electronic devices, as dis-
played in Fig. 1, and the energy deposited therein
that is of interest.

Track Length Distribution in 3-Dimensions

The distribution of lengths of ion tracks from an

isotropic source which is generated as the ions
transit a convex volume in straight lines is the same

mathematical distribution that one derives for the
case of random lines intersecting a convex volume.
The formulation from Geometric Probability which
describes this case was developed by Coleman. 3
Kellerer4 subsequently derived the formalism for
right cylinders of arbitrary cross section and that
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Fig. 1. The dose profile which surrounds a heavy
ion track is shown in the perspective of a VLSI
device. Circles are labeled in Rads(Si). Dose radii
and channel length are to scale. Other dimensions
are approximate.

.0F

0.8
X - - C (Q) PRO

I -----__ dc PROBI
_dI

)BABILITY OF CHORD >Q

ABILITY OF CHORD = -C

0.61
q;;

0.4

0.2

h 2 h 3h h 4h 5h 6h 7h 8h

Fig. 2. The sum and differential probabilities for
chord length distribution in a rectangular volume of
dimensions hx4hx6h.

formalism has been used by Bradford5 to treat the
case of a rectangular parallelpiped. The solution for
the probability distributions of track lengths (chord
lengths) is shown in Fig. 2 for a rectangular volume
hx4hx6h.

The integral distribution (probability that a track
length be < - ) is obtained from5

C(,) 8(a+b);l2 F(tt)+tF*(tt)dt
nsc rd (I -t )
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where

t is the 2-dimensional chord length and

d = 0

d =11-h2/.2

t. h

t > h

and where F(tt) and F*(tt) are 2-dimensional distri-
tions derived from a rectangle axb and h is the
height of the rectangular volume (h< a < b). We can
compute an event rate using C(t) by noting that any
convex body immersed in a random flux, cp particles/
cm2. sec, will experience gpS/4 transits/sec where S
is the total surface area.

C(t) is taken as the probability of

tEthreshold
> tthreshold LET. p

where LET is Linear Energy Transfer and LET. dE
and the event rate is given by

SIxS max AEn= x(x)C(-)dx per sec per device
4x

(2)

assuming 100% efficiency for the process (i. e.,
charge collection), ¢(x) is the LET flux in particles/
cm2. sec. MeV. cm2/gm, x is LET in MeV cm2/gm
and p = I $(x)dx.

C(t) is a reasonably complex function and the
event rate integral usually requires machine solution.

Equation (2) is reducible to a simple form by
taking the following definitions for the integrand:

For the cosmic ray (6 . Z . 26) LET flux

xOP 6-3) 1033.8 2¢(x) = (x )(-Z°) = 4Xr(4x10 )(-) particles/M2. sec0x x2
*MeV cm Igm

with the values for xo, ¢Z(x0), P taken from Ref. 11,
and taking

h 2.2 hox 2. 2C(t,) = C(h)(-) 75

-7 hp 22 -6
n = 7. 5x10 NS() (xmx) ]

= 7.5x107 NS(hp)2.8[( mE).6- mm6

= 7.5xl10 7 NS (hp )2en810 LE.6 d

(events /year N devices) (3)

since tmin = h in this approximation, tmax is the
major diagonal of the volume. This result is valid
for cosmic ray flux with LET > 103 MeV cm2/gm,
(6 . Z . 26) where

S = surface area of device sensitive volume mnu
h = device sensitive volume minimum dimension

(presumably depletion depth) in,.
E = switching energy in MeV
N = number of devices
P = density in gm/cm3

Insertion of values from Pickel and Blandford6
(e.g., AE = 5.6 MeV, h = 3.5 ±, N = 96,000,
S = 833 ,u2) yields n = 406. According to them, how-
ever, the memories are only "on" half the time so
that one would expect 203 events/year.

This is a result in reasonably close agreement
with the more approximate calculation of Pickel and
Blandford. However, the agreement is fortuitous.
Consider for example that the minimum LET specified
in that work was 4. 86x10+3 MeV cm2/gm whereas the
geometry (major diagonal) permits 103 MeV cm2/gm
for the minimum, as used in this work.

Perhaps a more important feature of the approxi-
mation is that it exposes the sensitivities of the event
rate to the pertinent parameters. The product NS
tends to remain constant with increasing device
density and represents the intercept area to the
cosmic flux. Hence, to decrease the event rate one
needs to scale the minimum dimension (presumably
depletion depth) faster than the threshold energy.
This represents the chief design criterion for avoid-
ance of soft errors: large AE, smaU h.

as a reasonable approximation for chord lengths
greater than h in rectangular volumes of elongation
greater than 2. (See Ref. 5).

AE 3 20= 10 MeV cm /gm
max

x -E 7x10 MeV cm /gmmax Pmi
mm

are the limits in the integral of Eq. (2), where the
numbers are examples for the 4K RAM of Ref. 6.
Insertion of the above and carrying out the integra-
tion yields

Permanent Damage (Oxide) vs Soft Error

The requirement for soft error production is
basically an ion track of sufficient length to deposit
the needed energy in the collection volume. It is for
that reason that the track length distributions in Fig. 2
are important. The longer track lengths can only
come from ions with large angles of incidence to the
plane of the device as shown in Fig. 3. This response
to angle of incidence has been measured experi-
mentally. 12,13 Thus, establishing a threshold energy
for the device error is equivalent to setting an angular
limit on the angles of incidence for each LET
group.
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Fig. 3. The relationship between angles of incidence
and contribution to various portions of the sum dis-
tribution of chord lengths is shown.

In the case of an ion transecting an oxide layer
two damage mechanisms are probable: (1) The
normal threshold voltage shifts associated with oxide
charge trapping and (2) A permanent effect asso-
ciated with the non-uniform dose around an ion track
and its size relative to the device. No threshold
energy deposition requirement exists for the latter,
hence, all ions of all LET rates are considered. In
that situation it is the size comparison between the
device area and the track cross section that is
important. These are shown for a conceptual inter-
action between a cosmic ray and a VLSI MOS tran-
sistor in Fig. 1. Since the effect of the highly
ionized region which surrounds the ray path on an
oxide is at present not well known, no attempt at an
event rate prediction is undertaken here.

Equation (3) above can be used to some value,
however, in the average dose case subject to the
same validity restrictions. If AE is set as the energy
required to achieve some average dose in the oxide,
then

For 103 rads or greater

AE = .016 MeV but AE I 660 MeV cm2/gm
min

which violates the validity criterion, LET ..103
Therefore, one would have to resort to the formal
solution of Eq. 2 for evaluation. Many events can be
anticipated as a result of this low LET requirement.

It remains of course to determine what fraction of
these events lead to sufficient threshold voltage shifts
to disable them. With the general decrease in hard-
ness associated with increased device density, the
magnitude of this effect is not certain.

Discrete Source Distribution

One of the sources of ion interaction in microelec-
tronic cells arises from ppm contamination of glass
and ceramic packaging by U/Th. 7 The resulting alpha
decay leads to soft errors in RAM cells. It is noted
here the impact of a possible situation: suppose the
U/Th is distributed not in a homogeneous fashion but
in discrete particulate clumps, as shown in Fig. 4.

To determine the total number of cells which have
v traversals one must integrate the probability distri-
bution over all the cells which lie within the range of
the decay products. For a particles of range, R,
emanating from a clump of activity, A, situated a
microns above the plane containing N memory cells in
a RAM of area D we have

AS2 atk =4n = k/r3

-k/r
3

3) V
P(v) = e (k/r )

N (-)ir(r - a )rD

where n is the average
number of traversals

for the Poisson distri-
bution

for the device areal
density

AE(MeV) = 1. 6x10 D(rads) V(cm3) . (4)

For example, an oxide layer of .1 ,um thickness and
an area of LSI scale, 14x21 ,um2, for 103 rads

AE = 4. 7 MeV and from Eq. (3)
n = . 65 events/year. 105 devices

Thus it is with exceedingly small probability that one
would see an LSI size gate oxide receive a dose of
103 rads or greater from the single pass of a cosmic
ray.

If the area is shrunk to VLSI dimension with
V = . 1 x 1 x 1 iam3, then for 104 rads or greater

AE = .16 MeV and from Eq. (3)
n = 3 events/year. 105 devices.

Fig. 4. Clumped activity distribution in relation to
VLSI array.
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The linear density of cells is dNr/dr = 2rNR
where

N N

The total number of cells hit by v traversals is then

R dN
N(v) = P(v)dR r dr (6)

a

which by insertion of the above becomes

3
-

e
x -3\ 1 21N()= 1 ve ! cxx v+2R NRdx

a/R

where x = r/R and c = k/R3 and finally

2R2Nc 3
N(v= H 1 e-d/xx -3v+ld

a/R

Multiple Hit Probabilities

The event rates calculated in Eq. (2) assumed total
independence of cells and hence no multiple hits (e. g.,
one ion hitting more than one cell). If the cells are
contained in an array, it is clear that those tracks of
large incidence angle have a probability of hitting
more than one cell as shown in Fig. 6 for the case of
a 4K RAM. This section attempts to determine the
magnitude of that multiple hit process.

Assume N devices in an array, with mean separa-
tion distance, q on a chip of area A. The device
thickness (presumably the depletion depth) is h. The
general problem is intractable in 3 dimensions and
indeed has been treated successfully in 2 dimensions
only for the case where the elements (devices) are
circular. 9, 10 One can achieve a solution,

(7)

The integral is easily evaluated numerically and
an example has been computed for the following con-
ditions:

At = 10 decays
R = 25 y t
a = 5,u

1 VLIN -r *106/16xlO6 = 7r/16 (VLSI)
R

The results are shown in Fig. 5. An activity, time of
104 for U238 in one year requires A = NX

N ' 5x013 atoms.

The above mode of analysis has been used by
Kellerer to predict the cell survival rate in lung
cells exposed to particulate Pu2O5. In that case, as
here, more than one hit may be required for cell
death. In the present case, repeated traversals of
the memory cell oxide may lead to cell disablement.
The formalism thus allows a prediction of the rate of
those occurrences.
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Fig. 6. The relationship between angular incidence
and multiplicity of hits is shown in the scale of a 4K
RAM.
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Fig. 5. The multiple traversal distribution for a
particles from U238. Range is 25 . and area density
on chip is 1 cellf4 ,u2 (VLSI).

Fig. 7. Relationships between 3-dimensional distri-
tion of tracks and their projection onto a plane.
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however, as follows. The procedure is to take the
3 dimensional chord length distribution and project it
into 2 dimensions as indicated in Fig. 7. The device
areas are then approximated by circles of diameter
2R.

From Kendall and Moran9 Geornetric Probability
the number of random transects of circles of
diameter 2R contained in area A for a chord of length
L is

n = 4LRN/A (8)

where N is the number of circles, A is large area
(chip).

The formalism to project the chord distribution
in 3 dimensions into 2 dimensions is

x xI -) 2 2.xd2 (9)

FQO) is the 3 d distribution and we use the infinite
plane slab approximation

F(]) = 2h It

leading to

(X) = 2h 21
x t(t

d-x1 0

where 4p(x) is the chord distribution in the plane.
Integration yields

4h2
OpX) = 3 (

3x

Integration of this distribution times Eq. (8)
yields the total hits from the incident flux due to
chords of length > q, where q is mean separation
distance, -( A/N ), (see Appendix 1).

OAc 4h2
n -_ - (4xRN/A)dx (

The total number of ions incident on the chip with
chord length 2 q given by

4_ 3

q

For the 4K RAM

16x8. 5x4000x33
m-= = 1.4

3x4xl06

For a 10 RAM in VLSI on the same chip

16xlxlO6x2
m =- 6 = 2.6

3x4x106

Finally, note this multiplier is not simply related
to the event rate prediction formalism unless the
events are due to only long chord lengths. To esta-
blish a correspondence to the event rate in general
one must know the distribution function for chord
lengths in the devices which results from this
restricted set of incidence angles. That dis-
tribution is unknown at this time.

Summary

The reduction in size of microelectronic devices
has lead to a revised view of relevant radiation
effects. Geometrical, statistical and distributional
analysis is now required for accurate description of
radiation effects in these devices. Much of the
required analysis technique can be borrowed from
radio biological literature. This work has
emphasized the geometrical factors pertinent to
accurate representation of radiation effects in small
devices subjected to fast heavy ion flux.
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Appendix 1

Derivation of Mean Distance of Separation

Hence the multiple hit factor is the ratio

4A) h2 16
q-(T RN/A) 16
4A h2

-q2

From pages 37-38 of Ref. 9 assume the objects
(projections of the sensitive volume onto a plane) are

randomly distributed in the plane. Then let XA be the
(14) number of points in area A (X is density). The num-

ber of objects in area of radius r is rr X r2. Consider
the distance to the nearest neighbor to be rl, then the
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set of values r1 is distributed according to

2 lrXdre 1

The mean value for nearest neighbor distance is
then

-Xirr2 d
0

In our case X = N/A the device density on a chip of
area A.

Define x = Xirr, then

- 1 Xfx-x

cx2 -nx 1
r exe d

0

is a standard form so that for n = 1

r =-( /2r 2=N2 ~2 2 I'

LSI and VLSI devices are not randomly distri-
buted, however, and for a given chip, all nearest
neighbor distances are presumably the same. We
want the minimum distance of separation rather than
the mean, hence, for a matrix array of / devices
on a side of length JA, the separation distance is
A /N.


